Economic Potentials of Energy-Efficient Residential Building Envelope Retrofitting in Turkey

Author(s):  
M. Mustafa Erdoğdu ◽  
Coşkun Karaca ◽  
Ali Kurultay

The amount of energy consumption in the residential buildings has a very significant share with nearly 30 percent in the total amount of energy consumption. Therefore, residential sector is identified in this chapter as being one of the areas with a large potential for energy savings. Inefficient dwelling construction and design methods are widely used in Turkey and only about five percent of residential buildings are insulated. Concerning the importance and immediate need in Turkey for energy-efficient residential building retrofitting, this chapter identifies economic benefits of such retrofitting by particularly focusing on heat transfers by conductivity, where the rate can be determined by surface size, thermal resistance of the building materials and their thickness.

2019 ◽  
pp. 728-755
Author(s):  
M. Mustafa Erdoğdu ◽  
Coşkun Karaca ◽  
Ali Kurultay

The amount of energy consumption in the residential buildings has a very significant share with nearly 30 percent in the total amount of energy consumption. Therefore, residential sector is identified in this chapter as being one of the areas with a large potential for energy savings. Inefficient dwelling construction and design methods are widely used in Turkey and only about five percent of residential buildings are insulated. Concerning the importance and immediate need in Turkey for energy-efficient residential building retrofitting, this chapter identifies economic benefits of such retrofitting by particularly focusing on heat transfers by conductivity, where the rate can be determined by surface size, thermal resistance of the building materials and their thickness.


2013 ◽  
Vol 675 ◽  
pp. 162-164
Author(s):  
Xiao Lin Dong ◽  
Dong Nan Han

The model of residential buildings is established in allusion to the type of residential building wall exterior insulation system and the characteristics of the various features of the wall enclosure in summer hot and winter cold region. The energy consumption of different types of wall structure is simulated and calculated using energy simulation software DeST-h, the economic characters of the structure of energy consumption of different types were compared and analyzed comprehensively, the conservation and efficiency were quantitative analyzed, the principias for selecting the structure of residential buildings of wre provide based on the principle of maximizing energy efficiency.


2021 ◽  
Vol 312 ◽  
pp. 02013
Author(s):  
Giada Romano ◽  
Francesco Mancini

According to the European Renovation Wave, the European building stock is obsolete and changes very slowly: more than 220 million housing units and 85-95% of the existing buildings will still be in use in 2050 and are absolutely not energy efficient. To cut emissions by 55% by 2030, the EU should reduce greenhouse gas emissions from buildings by 60%, their final energy consumption by 14% and energy consumption for heating and cooling by 18%. It is therefore urgent for the EU to focus on making buildings more energy efficient, less carbon intensive throughout their life cycle and more sustainable. From this framework comes the need for an adaptation not only of residential buildings but also of hotel facilities, which, on a national scale, make up about 45% of the accommodation facilities. In particular, the offer of accommodation facilities must be constantly adequate and the structures must be upgraded so that they always remain usable and comply with current regulations from the accessibility, seismic-structural and energy point of view. In this research, four hotels located in the historic centre of Rome have been analysed as case studies. Starting from an analysis of the current state, a series of interventions on the building envelope and systems have been studied, evaluating energy savings and the reduction of polluting emissions. With regard to the systems, the total electrification of the heating and domestic hot water preparation systems has been hypothesised, with the introduction of storage systems, also in view of participation in Demand Response programs.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

A humidity-sensitive demand-controlled ventilation system is known for many years. It has been developed and commonly applied in regions with an oceanic climate. Some attempts were made to introduce this solution in Poland in a much severe continental climate. The article evaluates this system's performance and energy consumption applied in an 8-floor multi-unit residential building, virtual reference building described by the National Energy Conservation Agency NAPE, Poland. The simulations using the computer program CONTAM were performed for the whole hating season for Warsaw's climate. Besides passive stack ventilation that worked as a reference, two versions of humidity-sensitive demand-controlled ventilation were checked. The difference between them lies in applying the additional roof fans that convert the system to hybrid. The study confirmed that the application of demand-controlled ventilation in multi-unit residential buildings in a continental climate with warm summer (Dfb) leads to significant energy savings. However, the efforts to ensure acceptable indoor air quality require hybrid ventilation, which reduces the energy benefits. It is especially visible when primary energy use is analyzed.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6305
Author(s):  
Haibo Guo ◽  
Lu Huang ◽  
Wenjie Song ◽  
Xinyue Wang ◽  
Hongnan Wang ◽  
...  

As the climate changed in recent years, an increase in summer indoor temperatures in severe cold and cold regions of China has started to affect thermal comfort. However, the local design standard for energy efficiency does not recognize this phenomenon. This paper reports the potential overheating phenomenon in residential buildings and examines the rationale for the current thermal designs adopted in severe cold and cold regions of China. In this study, the two most commonly used building materials, reinforced concrete (RC) and cross laminated timber (CLT), are used separately in the design of an 18-story residential building envelope located in six different cities in the severe cold and cold regions. The energy consumption and indoor operative temperatures during the operation of these buildings are simulated using Integrated Environmental Solutions Virtual Environment (IES VE). The results demonstrate that both the RC and the CLT buildings experience varying degrees of overheating in any climate subregion. The CLT buildings have longer overheating hours compared to the RC buildings, especially in the cold regions. The results also indicate that for apartments on higher stories, the cooling energy consumption and indoor temperature also increase gradually. The research results suggest that the local design standard for energy efficiency needs to be adjusted by adding thermal design methods for summer to reduce the periods of overheating.


2014 ◽  
Vol 8 (4) ◽  
pp. 477-491 ◽  
Author(s):  
Patrick X.W. Zou ◽  
Rebecca J. Yang

Purpose – This paper aims to investigate residential occupants’ motivations and behaviour on energy savings. Energy consumption in residential buildings is a major contributor to greenhouse gas emissions. Design/methodology/approach – By using an online survey questionnaire instrument, this research collected 504 sets of responses from households in the state of New South Wales, Australia. Findings – Through statistical analysis of the data collected, this research found that construction cost and government incentive were considered as the major influencing factors on achieving energy-efficient residential building development, and the lower bills resulted from the reduced energy and water consumption were considered as the most important benefits. The research also found that many households exhibited a high level of awareness and had implemented some sustainability improvement measures. It is suggested, based on these research findings, that governments should articulate, by means of education, the rationale and benefits of sustainable home development that are identified in this research and reduce material costs and increase government incentives. Originality/value – A framework on improving residential sustainability was proposed in this paper. Stakeholders in the sustainable home supply chain could use this framework as a reference to pave the way for energy efficient home development from their perspective


Author(s):  
Hua Chen ◽  
Qianqian Di

To improve the applicability of water-cooled air-conditioners in the domestic sector, the development of a prediction model for energy performance analysis is needed. This paper addressed the development of an empirical model for predicting the operation performance and the annual energy consumption for the use of water-cooled air-conditioners. An experimental prototype was set up and tested in an environmental chamber in validating the empirical model. The predictions compared well with the experimental results. Furthermore, a high-rise residential building whole-year energy consumption simulation on applications of water-cooled air conditioners in South china was also analyzed. The results show 20.4% energy savings over air-cooled units while the increase in water-side consumption is 31.1%. The overall energy savings were estimated at 16.2% when including the additional water costs.


Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6669
Author(s):  
Jerzy Sowa ◽  
Maciej Mijakowski

Humidity-sensitive, demand-controlled ventilation systems have been in use for many years in regions with oceanic climates. Some attempts have been made to apply this technology in Poland, which has a continental climate. This article evaluates the performance and energy consumption of such a system when applied in an eight-floor, multiunit, residential building, i.e., the virtual reference building described by the National Energy Conservation Agency (NAPE), Poland. Simulations using the computer program CONTAM were performed for the whole heating season based upon the climate in Warsaw. Besides passive stack ventilation, that served as a reference, two ventilation systems were studied: one standard and one “hybrid” system with additional roof fans. This study confirmed that the application of humidity-sensitive, demand-controlled ventilation in multiunit residential buildings in a continental climate (Dfb) led to significant energy savings (up to 11.64 kWh/m2 of primary energy). However, the operation of the system on higher floors was found to be ineffective. Ensuring consistent operation of the system on all floors required supplementary fans. The introduction of a hybrid mode reduced carbon dioxide concentrations by approximately 32% in the units located in the upper part of the building. The energetic effect in such cases depends strongly on the electricity source. In the case of the national energy grid, savings of primary energy would be relatively low, i.e., 1.07 kWh/m2, but in the case of locally produced renewable energy, the energy savings would be equal to 5.18 kWh/m2.


2011 ◽  
Vol 280 ◽  
pp. 147-151 ◽  
Author(s):  
Hong Guo ◽  
Min Fang Su ◽  
Xiao Jun Jin

Based on the current energy consumption situation of existing masonry-concrete residential buildings in China, it discussed the main energy-saving renovation policies and technologies. Taking existing masonry-concrete residential building of Taiyuan city as a case, it analyzed its heat loss situations, energy-saving renovation design and reconstruction technologies of building envelope. It discussed energy-saving renovation effects. Energy efficiency and indoor thermal environment improved significantly after energy-saving renovation. The building life is extended.


Sign in / Sign up

Export Citation Format

Share Document