Establishing Governance for Hybrid Cloud and the Internet of Things

Author(s):  
Martin Wolfe

This chapter is focused on the current and future state of operating a Hybrid Cloud or Internet of Things (IoT) environment. This includes tools, data, and processes which allow an organization to use these assets to serve business goals. Examining governance in this context shows how it works today and how it should change, using some real-world examples to show the impacts and advantages of these changes. It is a high level overview of those important topics with prescriptive detail left for a future and follow-on analysis. Finally, all of the lessons learned, when combined together form a governance fabric, resulting in a set of techniques and actions which tie together into a supporting framework and set of processes. The important questions include: Why does governance matter in the deployment and operation of Hybrid Cloud and IoT? If governance already exists how must it change? What are the important and salient characteristics of governance which need special focus? Thus, this analysis gives a context of how today's governance approach should change when moving to a Hybrid Cloud or IoT model.

2017 ◽  
pp. 16-40
Author(s):  
Martin Wolfe

This chapter is focused on the current and future state of operating a Hybrid Cloud or Internet of Things (IoT) environment. This includes tools, data, and processes which allow an organization to use these assets to serve business goals. Examining governance in this context shows how it works today and how it should change, using some real-world examples to show the impacts and advantages of these changes. It is a high level overview of those important topics with prescriptive detail left for a future and follow-on analysis. Finally, all of the lessons learned, when combined together form a governance fabric, resulting in a set of techniques and actions which tie together into a supporting framework and set of processes. The important questions include: Why does governance matter in the deployment and operation of Hybrid Cloud and IoT? If governance already exists how must it change? What are the important and salient characteristics of governance which need special focus? Thus, this analysis gives a context of how today's governance approach should change when moving to a Hybrid Cloud or IoT model.


2021 ◽  
Vol 39 (4) ◽  
pp. 1-33
Author(s):  
Fulvio Corno ◽  
Luigi De Russis ◽  
Alberto Monge Roffarello

In the Internet of Things era, users are willing to personalize the joint behavior of their connected entities, i.e., smart devices and online service, by means of trigger-action rules such as “IF the entrance Nest security camera detects a movement, THEN blink the Philips Hue lamp in the kitchen.” Unfortunately, the spread of new supported technologies makes the number of possible combinations between triggers and actions continuously growing, thus motivating the need of assisting users in discovering new rules and functionality, e.g., through recommendation techniques. To this end, we present , a semantic Conversational Search and Recommendation (CSR) system able to suggest pertinent IF-THEN rules that can be easily deployed in different contexts starting from an abstract user’s need. By exploiting a conversational agent, the user can communicate her current personalization intention by specifying a set of functionality at a high level, e.g., to decrease the temperature of a room when she left it. Stemming from this input, implements a semantic recommendation process that takes into account ( a ) the current user’s intention , ( b ) the connected entities owned by the user, and ( c ) the user’s long-term preferences revealed by her profile. If not satisfied with the suggestions, then the user can converse with the system to provide further feedback, i.e., a short-term preference , thus allowing to provide refined recommendations that better align with the original intention. We evaluate by running different offline experiments with simulated users and real-world data. First, we test the recommendation process in different configurations, and we show that recommendation accuracy and similarity with target items increase as the interaction between the algorithm and the user proceeds. Then, we compare with other similar baseline recommender systems. Results are promising and demonstrate the effectiveness of in recommending IF-THEN rules that satisfy the current personalization intention of the user.


2018 ◽  
Vol 2018 ◽  
pp. 1-30 ◽  
Author(s):  
Michele De Donno ◽  
Nicola Dragoni ◽  
Alberto Giaretta ◽  
Angelo Spognardi

The Internet of Things (IoT) revolution has not only carried the astonishing promise to interconnect a whole generation of traditionally “dumb” devices, but also brought to the Internet the menace of billions of badly protected and easily hackable objects. Not surprisingly, this sudden flooding of fresh and insecure devices fueled older threats, such as Distributed Denial of Service (DDoS) attacks. In this paper, we first propose an updated and comprehensive taxonomy of DDoS attacks, together with a number of examples on how this classification maps to real-world attacks. Then, we outline the current situation of DDoS-enabled malwares in IoT networks, highlighting how recent data support our concerns about the growing in popularity of these malwares. Finally, we give a detailed analysis of the general framework and the operating principles of Mirai, the most disruptive DDoS-capable IoT malware seen so far.


2021 ◽  
Vol 9 (1) ◽  
pp. 17-25
Author(s):  
Shafagat Mahmudova

This article outlines the Internet of Things (IoT). The Internet of Things describes a network of physical objects, i.e., the “thing” including sensors, software, and other technologies for connection and data sharing with other devices and systems over the Internet. In other words, IoT is a relatively new technology enabling many “smart” devices to get connected, to analyze, process, and transfer data to each other and connect to a network. The article clarifies the essence of intelligent systems for the Internet of Things, and analyzes the most popular software for the IoT platform. It studies high-level systems for IoT and analyzes available literature in this field. It highlights most advanced IoT software of 2021. The article also identifies the prospects and challenges of intelligent systems for the Internet of Things. The creation of new intelligent systems for IoT and the development of technology will greatly contribute to the development of economy.


Author(s):  
B. Shoban Babu ◽  
Prince Patel

As we all know, the Internet has altered everything, and the Internet of Things has given us hope for a bright future of the Internet with Machine-to-Machine (M2M) connectivity. This review study demonstrated that smart systems based on the Internet of Things are feasible and economical to build (IoT). In the field of healthcare, the Internet of Things has made significant progress. This article examines how the Internet of Things (IoT) is revolutionising the healthcare industry by giving huge healthcare advantages to humanity through accessible and practical healthcare solutions specially during the hard coronavirus situation around the world. The purpose of this study is to address the function of IoT in smart hospitals, as well as its importance in dealing with pandemics. Various smart gadgets that can provide a variety of features, such as adequate monitoring of high-risk patients, tracking their bio-metric measurements, and gathering real-time data, can be used to serve community-specific demands during pandemic spread. We've also looked into other plans that can detect unforeseen events utilising a variety of sensors and display the information gathered on an LED display. The results of observational studies have indicated a high level of agreement with the hypothetical claims.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1821 ◽  
Author(s):  
Zhenyu Wu ◽  
Kai Qiu ◽  
Jianguo Zhang

The interoperations of endpoint devices are generally achieved by gateways in Internet of Things (IoT) systems. However, the gateways mainly focus on networking communication, which is lack of data logic control capabilities. The microcontrollers with embedded intelligence could work as an intermediate device to help the interconnections of the endpoint devices. Moreover, they could help control the endpoint devices. In this paper, a microcontroller architecture with intelligent and scalable characteristics is proposed. The intelligence means that the microcontroller could control the target endpoint devices by its logical circuits, and the scalability means that the microcontroller architecture could be easily extended to deal with more complex problems. Two real world industrial implementations of the proposed architecture are introduced. The implementations show that the microcontroller is important to provide the intelligent services to users in IoT systems. Furthermore, a simulation experiment based on the cloud model is designed to evaluate the proposed method. The experimental results demonstrate the effectiveness of the proposed architecture.


2020 ◽  
Vol 16 (3) ◽  
pp. 19-51
Author(s):  
Samir Yerpude ◽  
Tarun Kumar Singhal

Currently, industry is going through the fourth Industrial Revolution, also termed Industry 4.0. It is characterized mainly by the cyber-physical systems dominated by digital technologies such as the Internet of Things (IoT). Organizations are making significant effort to understand customer needs and subsequently align them to the business goals for achieving market leadership. It is imperative for the longevity of the organization that goods and services be made available to the customer at the most appropriate place, time, and price. Supply chains are contributing to achieving this organizational goal. A paradigm shift was observed in the past few decades when organizations competed as supply chains in the market more than an individual brand. This shift brought forward the importance of collaborative supply chains. Researchers in this study have presented the impact of IoT origins on real-time data on a collaborative supply chain model, including internally and externally aligned parameters. The study recommends the best model basis for the goodness of fit from the customer and vendor perspective for the automotive industry in India.


Sensors ◽  
2019 ◽  
Vol 19 (7) ◽  
pp. 1492 ◽  
Author(s):  
Pantaleone Nespoli ◽  
David Useche Pelaez ◽  
Daniel Díaz López ◽  
Félix Gómez Mármol

The Internet of Things (IoT) became established during the last decade as an emerging technology with considerable potentialities and applicability. Its paradigm of everything connected together penetrated the real world, with smart devices located in several daily appliances. Such intelligent objects are able to communicate autonomously through already existing network infrastructures, thus generating a more concrete integration between real world and computer-based systems. On the downside, the great benefit carried by the IoT paradigm in our life brings simultaneously severe security issues, since the information exchanged among the objects frequently remains unprotected from malicious attackers. The paper at hand proposes COSMOS (Collaborative, Seamless and Adaptive Sentinel for the Internet of Things), a novel sentinel to protect smart environments from cyber threats. Our sentinel shields the IoT devices using multiple defensive rings, resulting in a more accurate and robust protection. Additionally, we discuss the current deployment of the sentinel on a commodity device (i.e., Raspberry Pi). Exhaustive experiments are conducted on the sentinel, demonstrating that it performs meticulously even in heavily stressing conditions. Each defensive layer is tested, reaching a remarkable performance, thus proving the applicability of COSMOS in a distributed and dynamic scenario such as IoT. With the aim of easing the enjoyment of the proposed sentinel, we further developed a friendly and ease-to-use COSMOS App, so that end-users can manage sentinel(s) directly using their own devices (e.g., smartphone).


Sign in / Sign up

Export Citation Format

Share Document