Soil Liquefaction Assessment by Anisotropic Cyclic Triaxial Test

Author(s):  
Koray Ulamis

Liquefaction of saturated sandy soils is one of the most significant aspects of earthquake triggered natural hazards. The main mechanism deals with the loss of effective stress due to rapid pore water pressure generation during earthquake shaking. This chapter involves with the fundamental mechanism and impacts of liquefaction. Liquefaction susceptibility of geological environments are briefly represented for preliminary assessment. Standard procedures of liquefaction are summarized. The dynamic response of sands are also reviewed. A case of anisotropic loading is considered, using three different particle sized sands below a shallow footing. Such sandy soils are subjected to anisotropic consolidation before performing undrained cyclic triaxial testing along limited cycles. Variation of axial strain, pore water pressure and related parameters are investigated. Main outcome of this study is to review the initial liquefaction state of sands by anisotropic loading case.

2019 ◽  
Vol 92 ◽  
pp. 08008
Author(s):  
Bozana Bacic ◽  
Ivo Herle

Time-consuming and complicated investigations of soil liquefaction in cyclic triaxial tests are the most common way of laboratory analysis of this phenomenon. Moreover, the necessary equipment for the performance of cyclic triaxial tests is very expensive. Much simpler method for laboratory testing of the soil liquefaction has been developed at the Institute of Geotechnical Engineering at the TU Dresden. This method takes into account the pore water pressure build-up during cyclic shearing within a short time period. During the test, the soil sample is subjected to horizontal cyclic loading and the generated pore water pressure is measured. In the first series of these experiments, a dependence of the pore water pressure buildup on the initial density of soil could be observed, as expected. When comparing different soils, it is shown that the tendency to liquefaction depends also on the granulometric properties (e.g. grain size distribution) of the soil. The aim of the further development is to establish a simple identification test for laboratory testing of the soil liquefaction.


2008 ◽  
Vol 22 (31n32) ◽  
pp. 5825-5830 ◽  
Author(s):  
ZHENGHUA XIAO ◽  
BO HAN ◽  
HONGJIAN LIAO ◽  
AKENJIANG TUOHUTI

A series of dynamic triaxial tests are performed on normal anisotropic consolidation and over anisotropic consolidation specimens of loess. Based on the test results, the variable regularity of dynamic shear stress, axial strain and pore water pressure of loess under dynamic loading are measured and analyzed. The influences of the dynamic shear strength and pore water pressure at different over consolidation ratio are analyzed. The relationship between dynamic shear strength and over consolidation ratio of loess is obtained. The evaluating standard of dynamic shear strength of loess is discussed. Meanwhile, how to determine the effective dynamic shear strength index of normal anisotropic consolidated loess is also discussed in this paper. Several obtained conclusions can be referenced for studying the dynamic shear strength of loess foundation.


2018 ◽  
Vol 4 (4) ◽  
pp. 755
Author(s):  
Lei Sun

The effect of variable confining pressure (VCP) on the cyclic deformation and cyclic pore water pressure in K0-consolidated saturated soft marine clay were investigated with the help of the cyclic stress-controlled advanced dynamic triaxial test in undrained condition. The testing program encompassed three cyclic deviator stress ratios, CSR=0.189, 0.284 and 0.379 and three stress path inclinations ηampl=3,1 and 0.64. All tests with constant confining pressure (CCP) and variable confining pressure (VCP) have identical initial stress and average stress. The results were analyzed in terms of the accumulative normalized excess pore water pressure rqu recorded at the end of each stress cycle and permanent axial strain, as well as resilient modulus. Limited data suggest that these behavior are significantly affected by both of the VCP and CSR. For a given value of VCP, both of the pore water pressure rqu and permanent axial strains are consistently increase with the increasing values of CSR. However, for a given value of CSR, the extent of the influence of VCP and the trend is substantially depend on the CSR.


2014 ◽  
Vol 4 (3) ◽  
Author(s):  
Mohammed Fattah ◽  
Mohammed Al-Neami ◽  
Nora Jajjawi

AbstractThe present research is concerned with predicting liquefaction potential and pore water pressure under the dynamic loading on fully saturated sandy soil using the finite element method by QUAKE/W computer program. As a case study, machine foundations on fully saturated sandy soil in different cases of soil densification (loose, medium and dense sand) are analyzed. Harmonic loading is used in a parametric study to investigate the effect of several parameters including: the amplitude frequency of the dynamic load. The equivalent linear elastic model is adopted to model the soil behaviour and eight node isoparametric elements are used to model the soil. Emphasis was made on zones at which liquefaction takes place, the pore water pressure and vertical displacements develop during liquefaction. The results showed that liquefaction and deformation develop fast with the increase of loading amplitude and frequency. Liquefaction zones increase with the increase of load frequency and amplitude. Tracing the propagation of liquefaction zones, one can notice that, liquefaction occurs first near the loading end and then develops faraway. The soil overburden pressure affects the soil liquefaction resistance at large depths. The liquefaction resistance and time for initial liquefaction increase with increasing depths. When the frequency changes from 5 to 10 rad/sec. (approximately from static to dynamic), the response in displacement and pore water pressure is very pronounced. This can be attributed to inertia effects. Further increase of frequency leads to smaller effect on displacement and pore water pressure. When the frequency is low; 5, 10 and 25 rad/sec., the oscillation of the displacement ends within the period of load application 60 sec., while when ω = 50 rad/sec., oscillation continues after this period.


2018 ◽  
Vol 55 (12) ◽  
pp. 1756-1768
Author(s):  
Jahanzaib Israr ◽  
Buddhima Indraratna

This paper presents results from a series of piping tests carried out on a selected range of granular filters under static and cyclic loading conditions. The mechanical response of filters subjected to cyclic loading could be characterized in three distinct phases; namely, (I) pre-shakedown, (II) post-shakedown, and (III) post-critical (i.e., the occurrence of internal erosion). All the permanent geomechanical changes such, as erosion, permeability variations, and axial strain developments, took place during phases I and III, while the specimen response remained purely elastic during phase II. The post-critical occurrence of erosion incurred significant settlement that may not be tolerable for high-speed railway substructures. The analysis revealed that a cyclic load would induce excess pore-water pressure, which, in corroboration with steady seepage forces and agitation due to dynamic loading, could then cause internal erosion of fines from the specimens. The resulting excess pore pressure is a direct function of the axial strain due to cyclic densification, as well as the loading frequency and reduction in permeability. A model based on strain energy is proposed to quantify the excess pore-water pressure, and subsequently validated using current and existing test results from published studies.


2020 ◽  
Vol 15 (6) ◽  
pp. 754-764
Author(s):  
Yohsuke Kawamata ◽  
Hiroshi Nakazawa ◽  
◽  

Various studies have examined soil liquefaction and the resultant structure damage. The 1995 Southern Hyogo Prefecture Earthquake, a near-field earthquake, caused significant damage when the ground was liquified due to the rapidly increased pore water pressure in several cycles of major motions. Therefore, the effect of pore water movement during earthquakes has been assumed to be limited, and liquefaction has mainly been evaluated in undrained conditions. Additionally, the ground and building settlement or inclination caused by liquefaction are deemed to result from pore water drainage after earthquakes. Meanwhile, in the 2011 Tohoku Earthquake, off the Pacific Coast, a subduction-zone earthquake, long-duration motions were observed for over 300 s with frequent aftershocks. Long-duration motions with frequent aftershocks are also anticipated in a future Nankai Trough Earthquake. The effect of pore water movement not only after but during an earthquake should be considered in cases where pore water pressure gradually increases in long-duration motion. The movement of pore water during and after an earthquake typically results in simultaneous dissipation and buildup of water pressure, as well as volumetric changes associated with settlement and lateral spreading. Such effects must reasonably be considered in liquefaction evaluation and building damage prediction. This research focuses on pore water seepage into the unsaturated surface layer caused by the movement of pore water. Seepage experiments were performed based on parameters such as height of test ground, ground surface permeability, and liquefaction duration. In the tests, water pressure when the saturated ground below the groundwater level is fully liquified was applied to the bottom of the specimen representing an unsaturated surface layer. Seepage behaviors into the unsaturated surface layer were then evaluated based on the experiment data. The results show that the water level rises due to pore water seepage from the liquefied ground into the unsaturated surface layer right above the liquefied ground. For this reason, a ground shallower than the original groundwater level can be liquified.


2013 ◽  
Vol 275-277 ◽  
pp. 295-298
Author(s):  
Gang Yang ◽  
Qing Yang ◽  
Wen Hua Liu

The cyclic behavior of normally consolidated silty clays was investigated by conducting a series of cyclic simple shear tests on one-dimensionally and isotropically consolidated reconstituted samples. The critical cyclic stress ratio was obtained by the normalized axial strain. Based on hysteretic curve of pore water pressure versus strain, dynamic characteristics of silty clay were investigated. The results showed that with increasing of cyclic loading, soil stress state can be divided into steady state, critical state and failure state based on the critical cyclic stress ratio. The hysteresis curve of pore water pressure versus strain was divided into two parts by cross point A. Compared with two parts, the variation law was obtained. When the upper part area was bigger than the lower part area, pore water pressure and axial strain continuously increase with cycle number; when the upper part area was smaller than the lower part area, pore water pressure and axial strain tended to be steady with cycle number.


2001 ◽  
Vol 38 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Guoxi Wu

A nonlinear effective stress finite element approach for dynamic analysis of soil structure is described in the paper. Major features of this approach include the use of a third parameter in the two-parameter hyperbolic stress-strain model, a modified expression for unloading–reloading modulus in the Martin–Finn–Seed pore-water pressure model, and an additional pore-water pressure model based on cyclic shear stress. The additional pore-water pressure model uses the equivalent number of uniform cyclic shear stresses for the assessment of pore-water pressure. Dynamic analyses were then conducted to simulate the seismically induced soil liquefaction and ground deformation of the Upper San Fernando Dam under the 1971 San Fernando Earthquake. The analyses were conducted using the finite element computer program VERSAT. The computed zones of liquefaction and deformation are compared with the measured response and with results obtained by others.Key words: effective stress method, finite element analysis, Upper San Fernando Dam, earthquake deformation, VERSAT.


Sign in / Sign up

Export Citation Format

Share Document