A Study on Various Image Processing Techniques and Hardware Implementation Using Xilinx System Generator

2018 ◽  
pp. 930-945
Author(s):  
Jyotsna Rani ◽  
Ram Kumar ◽  
Abahan Sarkar ◽  
Fazal A. Talukdar

This article reviews the various image processing techniques in MATLAB and also hardware implementation in FPGA using Xilinx system generator. Image processing can be termed as processing of images using mathematical operations by using various forms of signal processing techniques. The main aim of image processing is to extract important features from an image data and process it in a desired manner and to visually enhance or to statistically evaluate the desired aspect of the image. This article provides an insight into the various approaches of Digital Image processing techniques in Matlab. This article also provides an introduction to FPGA and also a step by step tutorial in handling Xilinx System Generator. The Xilinx System Generator tool is a new application in image processing and offers a friendly environment design for the processing. This tool support software simulation, but the most important is that can synthesize in FPGAs hardware, with the parallelism, robust and speed, this features are essentials in image processing. Implementation of these algorithms on a FPGA is having advantage of using large memory and embedded multipliers. Advances in FPGA technology with the development of sophisticated and efficient tools for modelling, simulation and synthesis have made FPGA a highly useful platform.

Author(s):  
Jyotsna Rani ◽  
Ram Kumar ◽  
Abahan Sarkar ◽  
Fazal A. Talukdar

This article reviews the various image processing techniques in MATLAB and also hardware implementation in FPGA using Xilinx system generator. Image processing can be termed as processing of images using mathematical operations by using various forms of signal processing techniques. The main aim of image processing is to extract important features from an image data and process it in a desired manner and to visually enhance or to statistically evaluate the desired aspect of the image. This article provides an insight into the various approaches of Digital Image processing techniques in Matlab. This article also provides an introduction to FPGA and also a step by step tutorial in handling Xilinx System Generator. The Xilinx System Generator tool is a new application in image processing and offers a friendly environment design for the processing. This tool support software simulation, but the most important is that can synthesize in FPGAs hardware, with the parallelism, robust and speed, this features are essentials in image processing. Implementation of these algorithms on a FPGA is having advantage of using large memory and embedded multipliers. Advances in FPGA technology with the development of sophisticated and efficient tools for modelling, simulation and synthesis have made FPGA a highly useful platform.


Author(s):  
ADIL GURSEL KARACOR ◽  
ERDAL TORUN ◽  
RASIT ABAY

Identifying the type of an approaching aircraft, should it be a helicopter, a fighter jet or a passenger plane, is an important task in both military and civilian practices. The task in question is normally done by using radar or RF signals. In this study, we suggest an alternative method that introduces the use of a still image instead of RF or radar data. The image was transformed to a binary black and white image, using a Matlab script which utilizes Image Processing Toolbox commands of Matlab, in order to extract the necessary features. The extracted image data of four different types of aircraft was fed into a three-layered feed forward artificial neural network for classification. Satisfactory results were achieved as the rate of successful classification turned out to be 97% on average.


2021 ◽  
Vol 8 (7) ◽  
pp. 210025
Author(s):  
Diego Baptista ◽  
Caterina De Bacco

Images of natural systems may represent patterns of network-like structure, which could reveal important information about the topological properties of the underlying subject. However, the image itself does not automatically provide a formal definition of a network in terms of sets of nodes and edges. Instead, this information should be suitably extracted from the raw image data. Motivated by this, we present a principled model to extract network topologies from images that is scalable and efficient. We map this goal into solving a routing optimization problem where the solution is a network that minimizes an energy function which can be interpreted in terms of an operational and infrastructural cost. Our method relies on recent results from optimal transport theory and is a principled alternative to standard image-processing techniques that are based on heuristics. We test our model on real images of the retinal vascular system, slime mould and river networks and compare with routines combining image-processing techniques. Results are tested in terms of a similarity measure related to the amount of information preserved in the extraction. We find that our model finds networks from retina vascular network images that are more similar to hand-labelled ones, while also giving high performance in extracting networks from images of rivers and slime mould for which there is no ground truth available. While there is no unique method that fits all the images the best, our approach performs consistently across datasets, its algorithmic implementation is efficient and can be fully automatized to be run on several datasets with little supervision.


2021 ◽  
Vol 4 (2) ◽  
pp. 144-148
Author(s):  
Rabia Noor Enam ◽  
Muhammad Tahir ◽  
Syed Muhammad Nabeel Mustafa ◽  
Rehan Qureshi ◽  
Hasan Shahid

To achieve the goal of identification, image processing and recognition is performed on the actual picture transformation. The amount of information included in an image is enormous because it is a two-dimensional space. Neural network image recognition is a new type of picture recognition technology developed by modern computer innovation. In this paper we have used neural network to implement image-based location identification. Using the image data, we have evaluated our proposed model’s predictive performance. By including more hidden layers in the convolution neural network, it is feasible to improve the network's training speed and reliability by having a large amount of data. However, 80% of the dataset is used for training and the remaining 20% is used for testing in our studies. The preliminary findings have shown that using a neural network to detect photos is both successful and practical. The proposed methods serve as a guide for travelers or tourists who are unfamiliar with a country. They simply need to point the camera at any historical or well-known location to learn more about it.


Author(s):  
B.V.V. Prasad ◽  
E. Marietta ◽  
J.W. Burns ◽  
M.K. Estes ◽  
W. Chiu

Rotaviruses are spherical, double-shelled particles. They have been identified as a major cause of infantile gastroenteritis worldwide. In our earlier studies we determined the three-dimensional structures of double-and single-shelled simian rotavirus embedded in vitreous ice using electron cryomicroscopy and image processing techniques to a resolution of 40Å. A distinctive feature of the rotavirus structure is the presence of 132 large channels spanning across both the shells at all 5- and 6-coordinated positions of a T=13ℓ icosahedral lattice. The outer shell has 60 spikes emanating from its relatively smooth surface. The inner shell, in contrast, exhibits a bristly surface made of 260 morphological units at all local and strict 3-fold axes (Fig.l).The outer shell of rotavirus is made up of two proteins, VP4 and VP7. VP7, a glycoprotein and a neutralization antigen, is the major component. VP4 has been implicated in several important functions such as cell penetration, hemagglutination, neutralization and virulence. From our earlier studies we had proposed that the spikes correspond to VP4 and the rest of the surface is composed of VP7. Our recent structural studies, using the same techniques, with monoclonal antibodies specific to VP4 have established that surface spikes are made up of VP4.


Author(s):  
V. Deepika ◽  
T. Rajasenbagam

A brain tumor is an uncontrolled growth of abnormal brain tissue that can interfere with normal brain function. Although various methods have been developed for brain tumor classification, tumor detection and multiclass classification remain challenging due to the complex characteristics of the brain tumor. Brain tumor detection and classification are one of the most challenging and time-consuming tasks in the processing of medical images. MRI (Magnetic Resonance Imaging) is a visual imaging technique, which provides a information about the soft tissues of the human body, which helps identify the brain tumor. Proper diagnosis can prevent a patient's health to some extent. This paper presents a review of various detection and classification methods for brain tumor classification using image processing techniques.


2019 ◽  
Vol 7 (5) ◽  
pp. 165-168 ◽  
Author(s):  
Prabira Kumar Sethy ◽  
Swaraj Kumar Sahu ◽  
Nalini Kanta Barpanda ◽  
Amiya Kumar Rath

2018 ◽  
Vol 6 (6) ◽  
pp. 1493-1499
Author(s):  
Shrutika.C.Rampure . ◽  
Dr. Vindhya .P. Malagi ◽  
Dr. Ramesh Babu D.R

Sign in / Sign up

Export Citation Format

Share Document