scholarly journals A novel review on various energy efficient routing algorithms in wireless sensor networks

2018 ◽  
Vol 7 (2.14) ◽  
pp. 533
Author(s):  
Abhilasha Jain ◽  
Ashok Kumar Goel

In the past few decades, Wireless sensor networks have exhibited a significant amount of growth and have been used in various applications like traffic control, environment monitoring etc. It comprises an accumulation of sensor nodes that sense the data from their surroundings and relay it to the base station. The network suffers from the limited energy constraints since the sensor nodes are mobile nodes and they run out of battery after a considerable amount of time. To overcome this, a certain level of heterogeneity is introduced among the nodes in terms of energy consumption to sustain the overall network lifetime. Various protocols are developed to prolong the network longevity. Among those, PEGASIS (Power-Efficient Gathering in Sensor Information Systems) and LEACH (Low- Energy Adaptive Clustering Hierarchy) are the significant ones, which ensures power-efficient gathering of the data in the sensor networks. This paper attempts to discuss the different aspects of PEGASIS and LEACH and their advantages and disadvantages in detail.

2020 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Aaqil Somauroo ◽  
Vandana Bassoo

Due to its boundless potential applications, Wireless Sensor Networks have been subject to much research in the last two decades. WSNs are often deployed in remote environments making replacement of batteries not feasible. Low energy consumption being of prime requisite led to the development of energy-efficient routing protocols. The proposed routing algorithms seek to prolong the lifetime of sensor nodes in the relatively unexplored area of 3D WSNs. The schemes use chain-based routing technique PEGASIS as basis and employ genetic algorithm to build the chain instead of the greedy algorithm. Proposed schemes will incorporate an energy and distance aware CH selection technique to improve load balancing. Clustering of the network is also implemented to reduce number of nodes in a chain and hence reduce delay. Simulation of our proposed protocols is carried out for homogeneous networks considering separately cases for a static base-station inside and outside the network. Results indicate considerable improvement in lifetime over PEGASIS of 817% and 420% for base station inside and outside the network respectively. Residual energy and delay performance are also considered.


2020 ◽  
Vol 13 (3) ◽  
pp. 353-361
Author(s):  
Veervrat Singh Chandrawanshi ◽  
Rajiv Kumar Tripathi ◽  
Rahul Pachauri ◽  
Nafis Uddin Khan

Background:Wireless Sensor Networks (WSNs) refer to a group of sensors used for sensing and monitoring the physical data of the environment and organizing the collected data at a central location. These networks enjoy several benefits because of their lower cost, smaller size and smarter sensors. However, a limited source of energy and lifetime of the sensors have emerged as the major setbacks for these networks.Methods:In this work, an energy-aware algorithm has been proposed for the transmission of variable data packets from sensor nodes to the base station according to the balanced energy consumption by all the nodes of a WSN.Results:Obtained simulation results verify that the lifetime of the sensor network is significantly enhanced in comparison to other existing clustering based routing algorithm.Conclusion:The proposed algorithm is comparatively easy to implement and achieves a higher gain in the lifetime of a WSN while keeping the throughput nearly same as LEACH protocol.


2019 ◽  
Vol 10 (4) ◽  
pp. 20 ◽  
Author(s):  
Alain Bertrand Bomgni ◽  
Garrik Brel Jagho Mdemaya

Wireless sensor networks are increasingly being deployed in areas where several types of information need to be harvested. Monitoring a given area is one of the main goals of this technology. This consists in deploying sensor nodes in the Area of Interest (AoI) in order to detect any event occurring in this area, collect information and send them to the base station. However, in this type of configuration, the quantity and the quality of data collected are important factors in making better decisions by the end user. It therefore becomes crucial to deploy sensors in the AoI so that the latters can cover as much as possible the AoI, and propose mechanism to collect and send data to the base station while minimizing the energy consumption of the sensors. In this paper, we bring into focus a solution (A2CDC) to resolve this problem which performs in two main stages: in the first stage, we propose an algorithm that guarantees a maximal coverage of the AoI after a random deployment of static sensors and mobile sensors; and in the second stage, we propose a node activity scheduling that minimizes energy consumption of both static and mobile nodes while sending collected data to the base station. Compared to many other algorithms in the literature, our solution is better in term of coverage percentage of the AoI, data received by the base station and in term of energy minimization.


Algorithms ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 72 ◽  
Author(s):  
Christos Nakas ◽  
Dionisis Kandris ◽  
Georgios Visvardis

Wireless Sensor Networks (WSNs) are among the most emerging technologies, thanks to their great capabilities and their ever growing range of applications. However, the lifetime of WSNs is extremely restricted due to the delimited energy capacity of their sensor nodes. This is why energy conservation is considered as the most important research concern for WSNs. Radio communication is the utmost energy consuming function in a WSN. Thus, energy efficient routing is necessitated to save energy and thus prolong the lifetime of WSNs. For this reason, numerous protocols for energy efficient routing in WSNs have been proposed. This article offers an analytical and up to date survey on the protocols of this kind. The classic and modern protocols presented are categorized, depending on i) how the network is structured, ii) how data are exchanged, iii) whether location information is or not used, and iv) whether Quality of Service (QoS) or multiple paths are or not supported. In each distinct category, protocols are both described and compared in terms of specific performance metrics, while their advantages and disadvantages are discussed. Finally, the study findings are discussed, concluding remarks are drawn, and open research issues are indicated.


Author(s):  
Karuna Babber

Background: The advent of wireless sensor networks makes it possible to track the events even in the remotest areas that too without human intervention. But severe resource constraints, generally energy of sensor nodes push researchers worldwide to develop energy efficient protocols in order to accomplish the application objectives of these networks. Objective: However, till date there is no energy efficient routing protocol which provides uniformity with maximum resource utilization for WSNs. Methods: In this paper, a Uniform Clustering Algorithm for Energy Efficiency in Wireless Sensor Networks (UCAEE) has been proposed. UCAEE is a base station controlled algorithm where entire sensing area is partitioned into uniform clusters. The motive of the algorithm is to split the sensing area into uniform clusters and to select cluster heads and gate-way nodes within each cluster so that the network energy can be balanced in a best possible way. Conclusion: UCAEE achieves minimum energy consumption during data transmission and reception. Results: Simulation results indicate that proposed UCAEE algorithm conserves more energy than its contemporary clustering algorithms like LEACH, PEGASIS and SECA and promises better network lifetime of wireless sensor networks.


2016 ◽  
Vol 15 (4) ◽  
pp. 6654-6658
Author(s):  
Irfan Shaqiri ◽  
Aristotel Tentov

In this paper we give an overview of some routing protocols which can improve the efficiency and scalability of wireless sensor networks. The Wireless Sensor Network (WSN) is a network consisting of ten to thousand small nodes with sensing, computing and wireless communication capabilities. WSN are generally used to monitor activities and report events, such as pollution parameters, healthcare issues, fire info etc. in a specific area or environment. It routs data back to the Base Station (BS). Data transmission is usually a multi-hop from node to node towards the BS. This type of networks is limited in power, computational and communication bandwidth. The main goal of all researchers is to find out the energy efficient routing protocol which will improve considerably networks resources in term of prolonging lifetime of sensor nodes. Also we highlight the various routing protocol with advantages and limitations as well. 


2013 ◽  
Vol 4 (2) ◽  
pp. 261-266 ◽  
Author(s):  
Jahangeer Ali ◽  
Gulshan Kumar ◽  
Dr. Mritunjay Kumar Rai

Sensing the environment without human intervention is carried out with Wireless Sensor Networks. Thus WSNs have gained impetus in every field as applicable to various sensing applications. As the sensor nodes are very minute with limited power, memory and controlling mechanism. Thus it is necessary to implement energy efficient routing in sensor nodes such that network lifetime is enhanced. In this paper, we have discussed various existing energy efficient routing schemes and made comparison on various parameters in literature survey. Finally came to conclusion that there is a need of an energy efficient routing protocol which can further extend network lifetime. We propose an idea in which existing; Enhanced Energy Efficient Protocol with Static Clustering (EEEPSC) is modified by placing a fraction of nodes having more energy than normal nodes in the locations where Base Station is far away. And BS is placed within the area of deployed nodes.


Author(s):  
RENGUGADEVI G ◽  
SUMITHRA M. G

Wireless sensor networks are a web of sensor nodes with a set of processor and limited memory unit embedded in it. Reliable routing of packets from the sensor node to its base station is the most important task for the networks. The routing protocols applied for the other networks cannot be used here due to its battery powered nodes. This paper gives an overview of the different hierarchical routing strategies used in wireless sensor networks and gives a brief working model of energy efficient routing protocols in WSN. In this paper performance of different routing protocols are compared based on metrics such as mobility support, stability, energy efficiency.


2021 ◽  
Author(s):  
Khanh-Van Nguyen ◽  
Chi-Hieu Nguyen ◽  
Phi Le Nguyen ◽  
Tien Van Do ◽  
Imrich Chlamtac

AbstractA quest for geographic routing schemes of wireless sensor networks when sensor nodes are deployed in areas with obstacles has resulted in numerous ingenious proposals and techniques. However, there is a lack of solutions for complicated cases wherein the source or the sink nodes are located close to a specific hole, especially in cavern-like regions of large complex-shaped holes. In this paper, we propose a geographic routing scheme to deal with the existence of complicated-shape holes in an effective manner. Our proposed routing scheme achieves routes around holes with the (1+$$\epsilon$$ ϵ )-stretch. Experimental results show that our routing scheme yields the highest load balancing and the most extended network lifetime compared to other well-known routing algorithms as well.


2015 ◽  
Vol 2015 ◽  
pp. 1-10
Author(s):  
Chin-Ling Chen ◽  
Chih-Cheng Chen ◽  
De-Kui Li

In recent years, wireless sensor network (WSN) applications have tended to transmit data hop by hop, from sensor nodes through cluster nodes to the base station. As a result, users must collect data from the base station. This study considers two different applications: hop by hop transmission of data from cluster nodes to the base station and the direct access to cluster nodes data by mobile users via mobile devices. Due to the hardware limitations of WSNs, some low-cost operations such as symmetric cryptographic algorithms and hash functions are used to implement a dynamic key management. The session key can be updated to prevent threats of attack from each communication. With these methods, the data gathered in wireless sensor networks can be more securely communicated. Moreover, the proposed scheme is analyzed and compared with related schemes. In addition, an NS2 simulation is developed in which the experimental results show that the designed communication protocol is workable.


Sign in / Sign up

Export Citation Format

Share Document