Partnerships for Science, Technology, Engineering, and Mathematics Education and Career Prosperity

Author(s):  
Chih-Che Tai ◽  
Ryan Andrew Nivens ◽  
Karin J. Keith

The purpose of this chapter is to report on partnerships between local school agents, business partners, institutes of higher education, and nonprofit organizations that promote science, technology, engineering, and mathematics (STEM) activities that enhance career opportunities for students. The authors share the importance of these partnerships as well as the benefits that result for all members. In addition to describing the benefits of the partnerships, the authors lay out techniques used to manage and develop partnerships. Most importantly, the authors share the outcomes of these partnerships, including professional development projects rooted in the work between the member partners. The chapter provides data about the impact of these partnerships on students' academic achievement and concludes with recommendations and suggestions to develop and sustain partnerships.

2018 ◽  
Vol 22 (3) ◽  
pp. 497-521 ◽  
Author(s):  
Yu (April) Chen ◽  
Sylvester Upah

Science, Technology, Engineering, and Mathematics student success is an important topic in higher education research. Recently, the use of data analytics in higher education administration has gain popularity. However, very few studies have examined how data analytics may influence Science, Technology, Engineering, and Mathematics student success. This study took the first step to investigate the influence of using predictive analytics on academic advising in engineering majors. Specifically, we examined the effects of predictive analytics-informed academic advising among undeclared first-year engineering student with regard to changing a major and selecting a program of study. We utilized the propensity score matching technique to compare students who received predictive analytics-informed advising with those who did not. Results indicated that students who received predictive analytics-informed advising were more likely to change a major than their counterparts. No significant effects was detected regarding selecting a program of study. Implications of the findings for policy, practice, and future research were discussed.


2021 ◽  
Vol 30 (2) ◽  
pp. 9-21
Author(s):  
A. I. Chuchalin

It is proposed to adapt the new version of the internationally recognized standards for engineering education the Core CDIO Standards 3.0 to the programs of basic higher education in the field of technology, natural and applied sciences, as well as mathematics and computer science in the context of the evolution of STEM. The adaptation of the CDIO standards to STEM higher education creates incentives and contributes to the systematic training of specialists of different professions for coordinated teamwork in the development of high-tech products, as well as in the provision of comprehensive STEM services. Optional CDIO Standards are analyzed, which can be used selectively in STEM higher education. Adaptation of the CDIO-FCDI-FFCD triad to undergraduate, graduate and postgraduate studies in the field of science, technology, engineering and mathematics is considered as a mean for improving the system of three-cycle STEM higher education.


Author(s):  
Sharon Smaldino ◽  
Lara Luetkehans

With all higher education educational endeavors there is a transformative element that enhances the progression forward in terms of academic program development. Teacher education is no exception to this aspect of the evolutionary process. The authors' story of that transformation and the impact of creative endeavors in teacher education offer a sense of moving beyond the traditional to the transformative in teacher education. Carter (1993) offers that the story can offer a perspective on our work and inform teacher education on the directions we might take to bring about improvement in our efforts to prepare educators for the future. The authors' story begins with a strong foundation and commitment to understanding the critical elements of successful partnerships. This foundation has served them for 15 years, and two distinct eras of partnership work that delineate the transformation. The authors explore each era: “The Professional Development School (PDS) Story” followed by “10 Years Later.”


Author(s):  
Pamela M. Leggett-Robinson ◽  
Brandi Campbell Villa

In 1976, the challenges faced by women of color who pursue careers in science, technology, engineering, and mathematics (STEM) fields were first brought to national attention. Forty-two years later, the authors re-examine the challenges, barriers, and successes of women of color in STEM higher education. This chapter examines the landscape of the STEM professoriate through a literature review (journals, trade magazines, theses, and dissertations) and reflective shorts and quotes from women of color navigating the STEM professoriate. The literature review spans a 10-year period (2008-2018). Both the review and the reflections focus on the areas of STEM belonging, self-presentation, stereotyping, institutional racism, discrimination, and tokenism as challenges faced by women of color in the STEM professoriate. Additionally, mechanisms used by women of color to navigate and succeed despite these barriers, such as mentoring, are explored throughout.


2022 ◽  
pp. 262-280
Author(s):  
Veronica A. Keiffer-Lewis

Achieving equity in higher education involves more than just closing achievement gaps and mitigating the impact of historic oppression and underrepresentation. In this chapter, the author presents a framework for cultural humility as a pathway to equity for institutions of education, as well as an approach for the professional development of cultural humility practitioners. The cultural humility framework comprises four core principles as well as five transformational skills (i.e., dialogue, inquiry, self-reflection, conflict transformation, and identity negotiation). The chapter concludes with a discussion about how to implement this framework at both the classroom and institutional levels, as well as the implications of such training for achieving greater equity in higher education.


2019 ◽  
Vol 18 (3) ◽  
pp. mr3
Author(s):  
Daniel L. Reinholz ◽  
Tessa C. Andrews

There has been a recent push for greater collaboration across the science, technology, engineering, and mathematics (STEM) fields in discipline-based education research (DBER). The DBER fields are unique in that they require a deep understanding of both disciplinary content and educational research. DBER scholars are generally trained and hold professional positions in discipline-specific departments. The professional societies with which DBER scholars are most closely aligned are also often discipline specific. This frequently results in DBER researchers working in silos. At the same time, there are many cross-cutting issues across DBER research in higher education, and DBER researchers across disciplines can benefit greatly from cross-disciplinary collaborations. This report describes the Breaking Down Silos working meeting, which was a short, focused meeting intentionally designed to foster such collaborations. The focus of Breaking Down Silos was institutional transformation in STEM education, but we describe the ways the overall meeting design and structure could be a useful model for fostering cross-­disciplinary collaborations around other research priorities of the DBER community. We describe our approach to meeting recruitment, premeeting work, and inclusive meeting design. We also highlight early outcomes from our perspective and the perspectives of the meeting participants.


2020 ◽  
pp. 153819272091836
Author(s):  
Elsa Gonzalez ◽  
Cecilia Contreras Aguirre ◽  
Joenie Myers

This study examined the success and persistence of Latina students in the complex environment of science, technology, engineering, and mathematics (STEM) fields at a Tier 1 Research higher education institution in Texas. For this qualitative study, 10 Latina students pursuing STEM majors were interviewed within a framework focusing on Greene’s resilience theory. Results of this study suggest a strong likelihood for Latinas to succeed in STEM fields because of their development of resilience.


Sign in / Sign up

Export Citation Format

Share Document