Detecting Intrusions in Cyber-Physical Systems of Smart Cities

Author(s):  
Ismail Butun ◽  
Patrik Österberg

Interfacing the smart cities with cyber-physical systems (CPSs) improves cyber infrastructures while introducing security vulnerabilities that may lead to severe problems such as system failure, privacy violation, and/or issues related to data integrity if security and privacy are not addressed properly. In order for the CPSs of smart cities to be designed with proactive intelligence against such vulnerabilities, anomaly detection approaches need to be employed. This chapter will provide a brief overview of the security vulnerabilities in CPSs of smart cities. Following a thorough discussion on the applicability of conventional anomaly detection schemes in CPSs of smart cities, possible adoption of distributed anomaly detection systems by CPSs of smart cities will be discussed along with a comprehensive survey of the state of the art. The chapter will discuss challenges in tailoring appropriate anomaly detection schemes for CPSs of smart cities and provide insights into future directions for the researchers working in this field.

2021 ◽  
Author(s):  
Joshua Ojo Nehinbe

Suitable models that auditors can adopt to concurrently audit smart Intrusion Detection Systems (IDSs) and log analyzers in Cyber Physical Systems (CPSs) that are also founded on sound empirical claims are scarce. Recently, post-intrusion studies on the resilience of the above mechanisms and prevalence of intrusions in the above domains have shown that certain intrusions that can reduce the performance of smart IDSs can equally overwhelm log analyzers such that both mechanisms can gradually dwindle and suddenly stop working. Studies have also shown that several components of Cyber Physical Systems have unusual vulnerabilities. These key issues often increase cyber threats on data security and privacy of resources that many users can receive over Internet of a Thing (IoT). Dreadful intrusions on physical and computational components of Cyber Physical Systems can cause systemic reduction in global economy, quality of digital services and continue usage of smart toolkits that should support risk assessments and identification of strategies of intruders. Unfortunately, pragmatic studies on how to reduce the above problems are grossly inadequate. This chapter uses alerts from Snort and C++ programming language to practically explore the above issues and further proposes a feasible model for operators and researchers to lessen the above problems. Evaluation with real and synthetic datasets demonstrates that the capabilities and resilience of smart Intrusion Detection Systems (IDSs) to safeguard Cyber Physical Systems (CPSs) can be improved given a framework to facilitate audit of smart IDSs and log analyzers in Cyberspaces and knowledge of the variability in the lengths and components of alerts warned by Smart Intrusion Detection Systems (IDSs).


2017 ◽  
Vol 9 (2) ◽  
pp. 101-118 ◽  
Author(s):  
Gheorghe Sebestyen ◽  
Anca Hangan

AbstractNowadays, when multiple aspects of our life depend on complex cyber-physical systems, automated anomaly detection, prevention and handling is a critical issue that inuence our security and quality of life. Recent catastrophic events showed that manual (human-based) handling of anomalies in complex systems is not recommended, automatic and intelligent handling being the proper approach. This paper presents, through a number of case studies, the challenges and possible solutions for implementing computer-based anomaly detection systems.


2021 ◽  
Vol 11 (9) ◽  
pp. 4005
Author(s):  
Asep Maulana ◽  
Martin Atzmueller

Anomaly detection in complex networks is an important and challenging task in many application domains. Examples include analysis and sensemaking in human interactions, e.g., in (social) interaction networks, as well as the analysis of the behavior of complex technical and cyber-physical systems such as suspicious transactions/behavior in financial or routing networks; here, behavior and/or interactions typically also occur on different levels and layers. In this paper, we focus on detecting anomalies in such complex networks. In particular, we focus on multi-layer complex networks, where we consider the problem of finding sets of anomalous nodes for group anomaly detection. Our presented method is based on centrality-based many-objective optimization on multi-layer networks. Starting from the Pareto Front obtained via many-objective optimization, we rank anomaly candidates using the centrality information on all layers. This ranking is formalized via a scoring function, which estimates relative deviations of the node centralities, considering the density of the network and its respective layers. In a human-centered approach, anomalous sets of nodes can then be identified. A key feature of this approach is its interpretability and explainability, since we can directly assess anomalous nodes in the context of the network topology. We evaluate the proposed method using different datasets, including both synthetic as well as real-world network data. Our results demonstrate the efficacy of the presented approach.


Author(s):  
Muthu Ramachandran

Cyber-physical systems (CPS) have emerged to address the need for more efficient integration of modern advancement in cyber and wireless communications technologies such as 5G with physical objects. In addition, CPSs systems also needed to efficient control of security and privacy when we compare them with internet of things (IoT). In recent years, we experienced lack of security concerns with smart home IoT applications such as home security camera, etc. Therefore, this paper proposes a systematic software engineering framework for CPS and IoT systems. This paper also proposed a comprehensive requirements engineering framework for CPS-IoT applications which can also be specified using BPMN modelling and simulation to verify and validate CPS-IoT requirements with smart contracts. In this context, one of the key contribution of this paper is the innovative and generic requirements classification model for CPS-IoT application services, and this can also be applied to other emerging technologies such as fog, edge, cloud, and blockchain computing.


Author(s):  
Vijey Thayananthan ◽  
Javad Yazdani

The main aim of this strategic research proposal is to develop a model of secure transportation system using efficient CPS which not only reduce the unnecessary accident rates but also increase safety system that enhances the livability of smart cities and Industry 4.0. Although the main focus is efficient security solutions, dynamic and intelligent approaches of the future security solutions will be able to detect the evolving threats and cyberattacks during the data or signal transmission between the users and service providers.


2022 ◽  
pp. 226-239
Author(s):  
Onur Ugurlu ◽  
Nusin Akram ◽  
Vahid Khalilpour Akram

The new generation of fast, small, and energy-efficient devices that can connect to the internet are already used for different purposes in healthcare, smart homes, smart cities, industrial automation, and entertainment. One of the main requirements in all kinds of cyber-physical systems is a reliable communication platform. In a wired or wireless network, losing some special nodes may disconnect the communication paths between other nodes. Generally, these nodes, which are called critical nodes, have many undesired effects on the network. The authors focus on three different problems. The first problem is finding the nodes whose removal minimizes the pairwise connectivity in the residual network. The second problem is finding the nodes whose removal maximizes the number of connected components. Finally, the third problem is finding the nodes whose removal minimizes the size of the largest connected component. All three problems are NP-Complete, and the authors provide a brief survey about the existing approximated algorithms for these problems.


Author(s):  
Imen Graja ◽  
Slim Kallel ◽  
Nawal Guermouche ◽  
Saoussen Cheikhrouhou ◽  
Ahmed Hadj Kacem

Sign in / Sign up

Export Citation Format

Share Document