scholarly journals Editorial - New Trends in the Numerical Analysis of Masonry Structures

2012 ◽  
Vol 6 (1) ◽  
pp. 119-120 ◽  
Author(s):  
Gabriele Milani

The Special Issue of The Open Civil Engineering Journal entitled “New trends in the numerical analysis of masonry structures” provides an insight into the most up-to-date nu-merical techniques used at academic and professional level to perform advanced structuralanalyses on masonry struc-tures. Masonry is a building material that has been used for more than ten thousand years. In many countries, masonry structures still amount to 30–50%of the new housing devel-opments. Also, most structures built before the 19th century and still surviving are built with masonry. Masonry is usu-ally described as a heterogeneous material formed by units and joints, with or without mortar, and different bond ar-rangements. Units are such as bricks, blocks, ashlars, adobes, irregular stones and others. Mortar can be clay, bitumen, chalk, lime/cement based mortar, glue or other. The almost infinite possible combinations generated by the geometry, nature and arrangement of units as well as the characteristics of mortars raise doubts about the accuracy of the term “ma-sonry”. Still, much information can be gained from the study of regular masonry structures, in which a periodic repetition of the microstructure occurs due to a constant arrangement of the units (or constant bond). The difficulties in performing advanced testing and pro-viding sufficiently general numerical models for this kind of structures are basically due to the innumerable variations of masonry typologies, the large scatter of in situ material prop-erties and the impossibility of reproducing all in a specimen. Therefore, most of the advanced numerical research carried out in the last decades concentrated in brick / block masonry and its relevance for design. Accurate modelling requires a comprehensive experimental description of the material, which seems mostly available at the present state of knowl-edge. From a numerical point of view, masonry behaviour is quite complex to model, exhibiting non-linearity very early during the loading process, with softening in both tension and compression, low ductility and differed deformations under sustained loads. In addition, masonry is the result of the assemblage of bricks or stones, where mortar is laid, with common geometric irregularities adding further complexity to the problem. The special issue collects ninepapers from experts in the field, including contributions of researchers from six differ-ent countries (Czech Republic, Iran, Italy, Portugal, Spain, Switzerland), either devoted to the utilization of non-standard numerical models for case-studies or presenting new approaches for the interpretation of masonry behaviour in presence of different kinds ofnon-linearity. The effort is always to put the knowledge beyond the existing state-of-the art. Karbassi and Lestuzzi [1]present a fragility analysis per-formed on unreinforced masonry buildings, conducted by means of the so called Applied Element Method (AEM), to define fragility curves of typical masonry buildings which may be regarded as representative of building classes. A se-ries of nonlinear dynamic analyses using AEM are per-formed for a 6-storey stone masonry and a 4-storey brick masonry building using more than 50 ground motion re-cords. The distribution of the structural responses and inter-storey drifts are finally used to develop spectral-based fragil-ity curves for the five European Macro-seismic Scale dam-age grades. In the second paper, Milani et al. [2]perform a detailed non-linear analysis (both pushover and limit analysis) on the San Pietro di Coppito bell tower in L’Aquila, Italy, trying to have an insight into the causes of the collapse occurred dur-ing the devastating 2009 earthquake. Sykora et al. [2]review several topics related to the ho-mogenization of transport processes occurring in historical masonry structures. Particular attention is paid to variations of temperature and moisture fields, whose contribution to structural damage usually far exceeds the effects of me-chanical loadings. The concept of Statistically Equivalent Periodic Unit Cell (SEPUC) is reviewed and utilized to deal with historic masonry and random patterns. Accepting SEPUC as a reliable representative volume element, a Fast Fourier Transform to both the SEPUC and large binary sam-ples of real masonry is used to tackle effective thermal con-ductivities problems. Fully coupled non-stationary heat and moisture transport problems are addressed next in the framework of a two-scale first-order homogenization, with emphases on the application of boundary and initial condi-tions at the meso-scale.

Author(s):  
Mustafa Hrasnica ◽  
Amir Čaušević ◽  
Nerman Rustempašić

Traditional art of building in Bosnia and Herzegovina comprises brick or stone masonry structures. Most historical buildings belonging to national cultural heritage were made of stone-masonry. The country is situated in seismic active region of South-East Europe. In the case of strong earthquake motion such buildings could suffer heavy damages. Some structural elements of historical buildings, as domes and arches, cracked already by moderate earthquake but without the loss of stability. Substantial damages were caused by recent war disaster. Damages could be accumulated through the history as well. Generally, stone-masonry buildings in Bosnia and Herzegovina can be classified in vulnerability classes between A and C according to European Macroseismic Scale. Design and construction procedures for rehabilitation are presented here with examples of repair and strengthening of mosques, which present historical stone masonry structures dating from the Ottoman period in Bosnia and Herzegovina. Traditional and contemporary materials were used for their rehabilitation. It is important to preserve original forms, especially those of damaged elements. The challenge for structural engineers and architects was to find equilibrium between aesthetical and structural demands.


2019 ◽  
pp. 1142-1173
Author(s):  
Mustafa Hrasnica ◽  
Amir Čaušević ◽  
Nerman Rustempašić

Traditional art of building in Bosnia and Herzegovina comprises brick or stone masonry structures. Most historical buildings belonging to national cultural heritage were made of stone-masonry. The country is situated in seismic active region of South-East Europe. In the case of strong earthquake motion such buildings could suffer heavy damages. Some structural elements of historical buildings, as domes and arches, cracked already by moderate earthquake but without the loss of stability. Substantial damages were caused by recent war disaster. Damages could be accumulated through the history as well. Generally, stone-masonry buildings in Bosnia and Herzegovina can be classified in vulnerability classes between A and C according to European Macroseismic Scale. Design and construction procedures for rehabilitation are presented here with examples of repair and strengthening of mosques, which present historical stone masonry structures dating from the Ottoman period in Bosnia and Herzegovina. Traditional and contemporary materials were used for their rehabilitation. It is important to preserve original forms, especially those of damaged elements. The challenge for structural engineers and architects was to find equilibrium between aesthetical and structural demands.


2017 ◽  
Vol 4 ◽  
pp. 24-30
Author(s):  
Shyam Sundar Basukala ◽  
Prem Nath Maskey

Historic buildings of Nepal are mainly constructed from masonry structure. Since masonry structures are weak in tension which leads to the failure of structure. So, to avoid possible damage in environment lives and property it is urgent to conduct vulnerability assessments. Seismic vulnerability of historic masonry buildings constructed in Bhaktapur at Byasi area is carried out for the case study. Five load bearing masonry buildings were selected out of 147 buildings considering opening percentage, storey and type of floor for modeling in SAP 2000 V10 Various methods of rapid visual screening (FEMA 154, EMS 98) are used to determine the vulnerability of the selected building. The Selected Building response is carried out by linear time history analysis. The seismic vulnerability of masonry structures is determined in terms of fragility curves which represent the probability of failure or damage due to various levels of strong ground motions for different damage state slight, moderate, extensive and collapse. From the result of Rapid Visual Screening (RVS) and Fragility curves of the buildings it is found that whole, buildings are found vulnerable from future earthquake.


2010 ◽  
Vol 133-134 ◽  
pp. 289-294 ◽  
Author(s):  
Giorgia Giardina ◽  
Max A.N. Hendriks ◽  
Jan G. Rots

The architectural heritage is subjected to various risk factors like the lack of maintenance, the material decay and the external solicitations. Nowadays, due to the ever-increasing demand for urban space, a relevant cause of structural damage that the historical buildings experience is the ground settlement due to excavation works. In the city of Amsterdam, for example, the construction of the new North-South metro line will involve an area characterized by the presence of many ancient masonry buildings. A fundamental phase of the design of this kind of projects is the assessment of the risk of subsidence which can affect the existing structures. The actual method to perform this assessment provides for a preliminary screening of the buildings located in the area surrounding the excavation, in order to evaluate which structures are at risk of settlement induced damage. It is based on the simplification of the building as a linear elastic beam and the assumption of the absence of interaction between the soil and the structure. An improved classification system should take into account the main parameters which influence the structural response, like the nonlinear behaviour of the building and the role played by the foundation in the soil-structure interaction. In this paper, the effect on the damage mechanism of the excavation advance and the location of the tunnel with respect to the building is evaluated. Numerical analyses are performed in order to understand the effect of different settlement profiles of the ground. A coupled model of the structure and the soil is evaluated, taking into account a damage model for the masonry building and the nonlinear behaviour of the soil-structure interaction. This paper demonstrates the importance of 3D modelling; neglecting the tunnel advance can lead to an underestimation of the damage.


2021 ◽  
Vol 6 (12) ◽  
pp. 178
Author(s):  
Bora Pulatsu ◽  
Semih Gonen ◽  
Paulo B. Lourenço

Unreinforced masonry structures are susceptible to man-made hazards such as impact and blast loading. However, the literature on this subject mainly focuses on masonry wall behavior, and there is a knowledge gap about the behavior of masonry arches under high-strain loading. In this context, this research aims to investigate both quasistatic and impact response of a dry-joint stone masonry arch using the discrete element method. Rigid blocks with noncohesive joint models are adopted to simulate dry-joint assemblages. First, the employed modeling strategy is validated utilizing the available experimental findings, and then sensitivity analyses are performed for both static and impact loading, considering the effect of joint friction angle, contact stiffness, and damping parameters. The outcomes of this research strengthen the existing knowledge in the literature regarding the computational modeling of masonry structures that are subjected to usual and extreme loading conditions. The results highlight that applied discontinuum-based numerical models are more sensitive to stiffness parameters in high-strain loading than static analysis.


Author(s):  
Marco Corradi ◽  
Adelaja Israel Osofero ◽  
Antonio Borri ◽  
Giulio Castori

Existing un-reinforced masonry buildings made of vaults, columns and brick and multi-leaf stone masonry walls, many of which have historical and cultural importance, constitute a significant portion of construction heritage in Europe and rest of the world. Recent earthquakes in southern Europe have shown the vulnerability of un-reinforced masonry constructions due to masonry almost total lack of tensile resistance. Composite materials offer promising retrofitting possibilities for masonry buildings and present several well-known advantages over existing conventional techniques. The aim of this work is to analyze the effectiveness of seismic-upgrading methods both on un-damaged (preventive reinforcement) and damaged (repair) masonry building. After a brief description of mechanical and physical properties of composite materials, three different applications have been addressed: in-plane reinforcement of masonry walls, extrados and intrados reinforcement of masonry vaults/arches and masonry column confinement with composite materials.


2013 ◽  
Vol 29 (4) ◽  
pp. 1159-1181 ◽  
Author(s):  
Qaisar Ali ◽  
Akhtar Naeem Khan ◽  
Mohammad Ashraf ◽  
Awais Ahmed ◽  
Bashir Alam ◽  
...  

Rubble-stone masonry structures are found abundantly in the Asian countries along the Himalayan range. Such structures are usually constructed in dry-stone masonry or are constructed in mud mortar, which makes them susceptible to damage and collapse in earthquakes. In order to study the seismic behavior of these structures, dynamic shake table tests on three reduced-scale rubble-stone masonry models were conducted. The models comprised a representative school building, a residential building, and a model incorporating simple cost-effective features in the form of horizontal and vertical reinforced concrete elements. This paper presents the results of shake table tests carried out on rubble-stone masonry buildings including: damage pattern, capacity curves, damage limit states, and response modification factors of these structures. Test data indicates that seismic performance of rubble-stone masonry structures can be significantly improved by incorporating cost-effective features such as vertical members and relatively thin horizontal bands.


2007 ◽  
Vol 23 (1) ◽  
pp. 77-94 ◽  
Author(s):  
Patrik Meyer ◽  
John Ochsendorf ◽  
John Germaine ◽  
Eduardo Kausel

Traditionally, the high-frequency components of earthquake loading are disregarded as a source of structural damage because their energy content is small and their frequency is too high to resonate with the natural frequencies of structures. We argue that higher-frequency waves traveling through stiff masonry structures can trigger two types of failure mechanisms that have not yet been taken into account. First, the high frequencies can cause small vertical interstone vibrations that result in irreversible relative displacements of the stones, which may ultimately lead to collapse. The energy needed to cause this deformation and failure comes largely from gravitational forces. Second, the partial fluidification and densification of the loose, granular inner core of some unreinforced masonry walls results in an increase of outward thrust. Preliminary results of a series of static and dynamic tests, as well as numerical models, demonstrate the potentially destructive effects of high-frequency/low-energy seismic waves on unreinforced masonry structures. Based on this new understanding, an improved construction method is suggested.


Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 230
Author(s):  
Gabriele Guerrini ◽  
Christian Salvatori ◽  
Ilaria Senaldi ◽  
Andrea Penna

This paper presents an experimental and numerical study on different retrofit solutions for stone masonry buildings with timber diaphragms in earthquake-prone regions, aiming at enhancing wall-to-diaphragm connections, diaphragms’ stiffness, and masonry properties. The experimental results of incremental dynamic shake-table tests on three full-scale two-story buildings, complemented by material and component characterization tests, are initially summarized. The first building specimen was unstrengthened. The second one was retrofitted at the floor and roof levels with improved wall-to-diaphragm connections and a moderate increase in diaphragm stiffness. Connections were also improved in the third specimen together with a significant enhancement of diaphragm stiffness. The calibration of two numerical models, versus the experimental response of the retrofitted building specimens, is then presented. The models were further modified and reanalyzed to assess the effects of masonry mechanical upgrades, which could be achieved in practice through deep joint repointing or various types of jacketing. These solutions were simulated by applying correction coefficients to the masonry mechanical properties, as suggested by the Italian building code. The effectiveness of the experimentally implemented and numerically simulated interventions are discussed in terms of strength enhancement and failure modes.


Sign in / Sign up

Export Citation Format

Share Document