Heart Disease Diagnosis

Author(s):  
Siddhartha Kumar Arjaria ◽  
Abhishek Singh Rathore

In the modern era of information technology, machine learning algorithms are used in different domains for boosting the quality of decision making. The correct decision making about the disease diagnosis is one of the applications where these approaches are applied successfully for assisting the doctors. Correct and timely diagnosis of disease is the primary requirement of effective treatment. Today, one of the most leading causes of death is heart disease. This chapter deals with the application of different machine learning algorithms for effective heart disease diagnosis. Diagnosis through the machine learning algorithms involves the three major steps, data preprocessing, feature selection, and classification. The chapter covers the experimental study of performance of SVM, ANN, logistic regression, random forest, KNN, AdaBoost, Naive Bayes, decision tree, SGD, CN2 rule inducer approaches.

2021 ◽  
Author(s):  
Ram Sunder Kalyanraman ◽  
Xiaoli Chen ◽  
Po-Yen Wu ◽  
Kevin Constable ◽  
Amit Govil ◽  
...  

Abstract Ultrasonic and sonic logs are increasingly used to evaluate the quality of cement placement in the annulus behind the pipe and its potential to perform as a barrier. Wireline logs are carried out in widely varying conditions and attempt to evaluate a variety of cement formulations in the annulus. The annulus geometry is complex due to pipe standoff and often affects the behavior (properties) of the cement. The transformation of ultrasonic data to meaningful cement evaluation is also a complex task and requires expertise to ensure the processing is correctly carried out as well interpreted correctly. Cement formulations can vary from heavy weight cement to ultralight foamed cements. The ultrasonic log-based evaluation, using legacy practices, works well for cements that are well behaved and well bonded to casing. In such cases, a lightweight cement and heavyweight cement, when bonded, can be easily discriminated from gas or liquid (mud) through simple quantitative thresholds resulting in a Solid(S) - Liquid(L) - Gas(G) map. However, ultralight and foamed cements may overlap with mud in quantitative terms. Cements may debond from casing with a gap (that is either wet or dry), resulting in a very complex log response that may not be amenable to simple threshold-based discrimination of S-L-G. Cement sheath evaluation and the inference of the cement sheath to serve as a barrier is complex. It is therefore imperative that adequate processes mitigate errors in processing and interpretation and bring in reliability and consistency. Processing inconsistencies are caused when we are unable to correctly characterize the borehole properties either due to suboptimal measurements or assumptions of the borehole environment. Experts can and do recognize inconsistencies in processing and can advise appropriate resolution to ensure correct processing. The same decision-making criteria that experts follow can be implemented through autonomous workflows. The ability for software to autocorrect is not only possible but significantly enables the reliability of the product for wellsite decisions. In complex situations of debonded cements and ultralight cements, we may need to approach the interpretation from a data behavior-based approach, which can be explained by physics and modeling or through observations in the field by experts. This leads a novel seven-class annulus characterization [5S-L-G] which we expect will bring improved clarity on the annulus behavior. We explain the rationale for such an approach by providing a catalog of log response for the seven classes. In addition, we introduce the ability to carry out such analysis autonomously though machine learning. Such machine learning algorithms are best carried out after ensuring the data is correctly processed. We demonstrate the capability through a few field examples. The ability to emulate an "expert" through software can lead to an ability to autonomously correct processing inconsistencies prior to an autonomous interpretation, thereby significantly enhancing the reliability and consistency of cement evaluation, ruling out issues related to subjectivity, training, and competency.


Author(s):  
Sunil Kr. Tiwari ◽  
◽  
Suresh Kumar Garg ◽  

In the health sector, Data Analytics and Machine Learning (ML) methods are taking over role of skill and experience of a doctor especially in diagnosing diseases and preventive health measures. The health care industry is collecting very large amount of data related to patients, his medical history for preventive medication and diagnosing disease well in time and more accurately. In this paper, a comparison of five classification machine learning methods viz. Decision Tree, Random Forests, Support Vector Machine, Artificial Neural Network and Fuzzy Logic based soft computing method is done for heart disease diagnosis on the basis of data available on public domain. Out of 76 parameters collected for a patient, only 15 medical parameters such as blood pressure, sex, age, obesity and cholesterol level are used for predicting heart disease of patients.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Alan Brnabic ◽  
Lisa M. Hess

Abstract Background Machine learning is a broad term encompassing a number of methods that allow the investigator to learn from the data. These methods may permit large real-world databases to be more rapidly translated to applications to inform patient-provider decision making. Methods This systematic literature review was conducted to identify published observational research of employed machine learning to inform decision making at the patient-provider level. The search strategy was implemented and studies meeting eligibility criteria were evaluated by two independent reviewers. Relevant data related to study design, statistical methods and strengths and limitations were identified; study quality was assessed using a modified version of the Luo checklist. Results A total of 34 publications from January 2014 to September 2020 were identified and evaluated for this review. There were diverse methods, statistical packages and approaches used across identified studies. The most common methods included decision tree and random forest approaches. Most studies applied internal validation but only two conducted external validation. Most studies utilized one algorithm, and only eight studies applied multiple machine learning algorithms to the data. Seven items on the Luo checklist failed to be met by more than 50% of published studies. Conclusions A wide variety of approaches, algorithms, statistical software, and validation strategies were employed in the application of machine learning methods to inform patient-provider decision making. There is a need to ensure that multiple machine learning approaches are used, the model selection strategy is clearly defined, and both internal and external validation are necessary to be sure that decisions for patient care are being made with the highest quality evidence. Future work should routinely employ ensemble methods incorporating multiple machine learning algorithms.


Author(s):  
Wan Adlina Husna Wan Azizan ◽  
A'zraa Afhzan Ab Rahim ◽  
Siti Lailatul Mohd Hassan ◽  
Ili Shairah Abdul Halim ◽  
Noor Ezan Abdullah

Sign in / Sign up

Export Citation Format

Share Document