Precision and Reliability of the T-Scan III System

Author(s):  
Bernd Koos, DMD

Precise analysis of occlusal contacts and occlusal force is a problem in functional diagnostics that has not yet been satisfactorily resolved, despite the fact that the deleterious consequences of an unbalanced occlusion are widespread, and can be severe. In clinical practice, the present-day analysis of the occlusion is reduced to depicting force with color-marking foils that leave ink marks upon the teeth. However, these foils only indicate the localization of contacts, but do not describe reliably the occlusal force relationships. Precise analysis that incorporates time resolution, and plots the distribution of forces within the occlusion, is not possible when employing the traditional occlusal indicator methods. A detailed occlusal force and timing analysis can only be provided by performing a computer-assisted analysis, using the T-Scan III system (Tekscan, Inc. S. Boston, MA, USA), which records changing relative occlusal force levels and real-time occlusal contact sequence data, with high definition (HD) recording sensors. The following chapter demonstrates the accuracy and reliability of this computer-based occlusal measurement method that reliably describes the time-dependent distribution of occlusal force evolution.

2017 ◽  
pp. 846-875
Author(s):  
Bernd Koos

Precise analysis of occlusal contacts and occlusal force is a problem in functional diagnostics that has not yet been satisfactorily resolved, despite the fact that the deleterious consequences of an unbalanced occlusion are widespread and can be severe. In clinical practice, the present-day analysis of the occlusion is reduced to depicting force with color-marking foils that leave ink marks upon the teeth. However, these foils only indicate the localization of contacts, but do not describe reliably the occlusal force relationships. Precise analysis that incorporates time resolution and plots the distribution of forces within the occlusion is not possible when employing the traditional occlusal indicator methods. A detailed occlusal force and timing analysis can only be provided by performing a computer-assisted analysis, using the T-Scan III system (Tekscan, Inc. S. Boston, MA, USA), which records changing relative occlusal force levels and real-time occlusal contact sequence data with High Definition (HD) recording sensors. This chapter demonstrates the accuracy and reliability of this computer-based occlusal measurement method that reliably describes the time-dependent distribution of occlusal force evolution.


Author(s):  
Bernd Koos

Precise analysis of occlusal contacts and occlusal force is a problem in functional diagnostics that has not yet been satisfactorily resolved, despite the fact that the deleterious consequences of an unbalanced occlusion are widespread and can be severe. In clinical practice, the present-day analysis of the occlusion is reduced to depicting force with color-marking foils that leave ink marks upon the teeth. However, these foils only indicate the localization of contacts, but do not describe reliably the occlusal force relationships. Precise analysis that incorporates time resolution and plots the distribution of forces within the occlusion is not possible when employing the traditional occlusal indicator methods. A detailed occlusal force and timing analysis can only be provided by performing a computer-assisted analysis, using the T-Scan III system (Tekscan, Inc. S. Boston, MA, USA), which records changing relative occlusal force levels and real-time occlusal contact sequence data with High Definition (HD) recording sensors. This chapter demonstrates the accuracy and reliability of this computer-based occlusal measurement method that reliably describes the time-dependent distribution of occlusal force evolution.


Geophysics ◽  
1977 ◽  
Vol 42 (3) ◽  
pp. 468-481 ◽  
Author(s):  
Paul E. Anuta

The development of airborne and satellite multispectral scanning radiometers has created widespread interest in the application of such sensors to mapping of earth resources. The energy sensed in each band can be used as a parameter in a computer‐based, multidimensional‐pattern‐recognition process to aid in the interpretation of the nature of elements in the scene. Images from each band can also be interpreted visually. Visual interpretation of 5 or 10 multispectral images simultaneously becomes impractical, especially as the area studied increases; hence, great emphasis has been placed on machine (computer‐assisted) techniques in the interpretation process. A number of other data sets have recently been studied and integrated by digital registration with the multispectral reflectance and radiance phenomena. Topographic data, which have been registered with four‐band Landsat multispectral scanner (MSS) data, are being studied to determine relationships between spectral and topographic variables. Geophysical variables. including gamma‐ray and magnetic data, have also been registered and studied using the multivariate analysis approach.


Biologia ◽  
2006 ◽  
Vol 61 (6) ◽  
Author(s):  
Jozef Grones ◽  
Miroslava Kretová

AbstractThe complete nucleotide sequence of plasmid pAP4 isolated from Acetobacter pasteurianus 2374T has been determined. Plasmid pAP4 was analysed and found to be 3,870 bp in size with a G+C content of 50.1%. Computer assisted analysis of sequence data revealed 2 possible ORFs with typical promoter regions. ORF1 codes for a protein responsible for kanamycin resistance similar with Tn5 transposone, ORF2 encodes a resistance to ampicillin identical with Tn3 transposone. Plasmid has in A. pasteurianus five copies and in E. coli DH1 about 30 copies per chromosome and it segregation stability in both strains is very high. Based on the data on replication region, plasmid does not code for a replication protein and origin region is similar with ColE1-like plasmid.


Author(s):  
M Wessendorf ◽  
A Beuning ◽  
D Cameron ◽  
J Williams ◽  
C Knox

Multi-color confocal scanning-laser microscopy (CSLM) allows examination of the relationships between neuronal somata and the nerve fibers surrounding them at sub-micron resolution in x,y, and z. Given these properties, it should be possible to use multi-color CSLM to identify relationships that might be synapses and eliminate those that are clearly too distant to be synapses. In previous studies of this type, pairs of images (e.g., red and green images for tissue stained with rhodamine and fluorescein) have been merged and examined for nerve terminals that appose a stained cell (see, for instance, Mason et al.). The above method suffers from two disadvantages, though. First, although it is possible to recognize appositions in which the varicosity abuts the cell in the x or y axes, it is more difficult to recognize them if the apposition is oriented at all in the z-axis—e.g., if the varicosity lies above or below the neuron rather than next to it. Second, using this method to identify potential appositions over an entire cell is time-consuming and tedious.


1994 ◽  
Vol 6 (1) ◽  
pp. 52-58 ◽  
Author(s):  
Charles Anderson ◽  
Robert J. Morris

A case study ofa third year course in the Department of Economic and Social History in the University of Edinburgh isusedto considerandhighlightaspects of good practice in the teaching of computer-assisted historical data analysis.


Author(s):  
M. Safrudin ◽  
Sutaryat Trisnamansyah ◽  
Tb. Abin Syamsuddin Makmun ◽  
Deni Darmawan

The aimed of this studied was developed learning through computer-assisted as BCBL. Result of this studied have been stated that: (a) the potential of five high schools in Karawang districts supported the implementation of BCBL development, (b) planning of BCBL development through a systematic development stages from preparation, production, simulation, experiment, and publication, (c) the implementation result of BCBL learning through revision tested were learner activity and higher autonomy. Keywords: BCBL; Independence Self-reliance; Student Competence.


2021 ◽  
Vol 14 (3) ◽  
pp. 1-26
Author(s):  
Andrea Asperti ◽  
Stefano Dal Bianco

We provide a syllabification algorithm for the Divine Comedy using techniques from probabilistic and constraint programming. We particularly focus on the synalephe , addressed in terms of the "propensity" of a word to take part in a synalephe with adjacent words. We jointly provide an online vocabulary containing, for each word, information about its syllabification, the location of the tonic accent, and the aforementioned synalephe propensity, on the left and right sides. The algorithm is intrinsically nondeterministic, producing different possible syllabifications for each verse, with different likelihoods; metric constraints relative to accents on the 10th, 4th, and 6th syllables are used to further reduce the solution space. The most likely syllabification is hence returned as output. We believe that this work could be a major milestone for a lot of different investigations. From the point of view of digital humanities it opens new perspectives on computer-assisted analysis of digital sources, comprising automated detection of anomalous and problematic cases, metric clustering of verses and their categorization, or more foundational investigations addressing, e.g., the phonetic roles of consonants and vowels. From the point of view of text processing and deep learning, information about syllabification and the location of accents opens a wide range of exciting perspectives, from the possibility of automatic learning syllabification of words and verses to the improvement of generative models, aware of metric issues, and more respectful of the expected musicality.


Sign in / Sign up

Export Citation Format

Share Document