Combining the Air Indexing Method With the T-Scan System to Detect and Quantify Cervical Dentin Hypersensitivity

Author(s):  
Thomas A. Coleman. DDS

This chapter introduces the air indexing method for detecting and quantifying cervical dentin hypersensitivity (CDH) as a companion to the T-Scan Occlusal Analysis System which evaluates force and timing values for occlusal contacts of teeth. This chapter will also highlight an evidence-based retrospective investigation undertaken between 1979 and 1996 that evaluated associations and/or correlations between diagnosed CDH and its resolution following occlusal adjustment. This retrospective's method described the detection, diagnosis, and treatment of the signs and/or symptoms of the common clinical finding amongst patients with CDH. Stress physics will illustrate how small occlusal contacts magnify the impact that applied occlusal contact force has on the cervical regions of teeth. This resultant cervical stress is etiologic for how non-carious cervical lesions (NCCLs) form and degrade tooth roots. This chapter also explains how biocorrosion from endogenous and exogenous sources produces loss of dentin's protective proteins, glycoproteins, and cementum, which add to the effects of applied occlusal force, thereby creating CDH symptoms and NCCLs. CDH appears resultant from the co-factors of occlusal forces that produce cervical stress, along with biocorrosion, that are both modified by occlusal surface friction. The air indexing method of CDH diagnosis is an objective diagnostic means to detect and quantify CDH symptoms during the formation of cervical lesions. This chapter presents the clinical benefits of melding the T-Scan Occlusal Analysis System with the Air Indexing Method when clinically assessing and treating cervical hard tissue pathologies. The clinician gains significantly more occlusal insight as opposed to using either methodology alone, when air indexing is combined with T-Scan's occlusal contact force and timing data. Lastly, this chapter introduces two case reports of how T-Scan guided occlusal adjustments can be effective at reducing CDH and prohibiting the progression of gingival recession.

Author(s):  
Thomas A. Coleman, DDS

This chapter introduces the Air Indexing method for detecting and quantifying cervical dentin hypersensitivity as a companion to the T-Scan Occlusal Analysis System, which evaluates occlusal force and timing values of contacting teeth. The chapter discusses detection, diagnosis, and treatment of clinical signs and/or symptoms of Cervical Dentin Hypersensitivity (CDH). A 17-year-long retrospective study conducted between 1979 and 1996 is presented that illustrates the correlation between Cervical Dentin Hypersensitivity and its resolution following occlusal adjustment. Resulting stress from occlusal contact force is etiologic for non-carious cervical lesion formation and root degradation. This chapter details how biocorrosion and lost protective glycoproteins hasten the effects of applied force, creating CDH symptoms and cervical abfractions. Lastly, the Air Indexing method of CDH diagnosis is melded with T-Scan occlusal analysis to diagnose and treat CDH symptoms. Together, these two methods yield more CDH/occlusal insight than either method can alone.


Author(s):  
Nick Yiannios, DDS

In the literature, Dentinal Hypersensitivity (DH) is considered to arise from exposed dentin and patent dentinal tubules. However, clinical observation of recurrent DH sensitivity indicates it can occur in the presence or absence of exposed dentin. Quantified occlusal contact force and timing parameters have been ignored in studies assessing hypersensitive teeth. This chapter introduces a novel occlusal concept: Frictional Dental Hypersensitivity (FDH). Clinical evidence from combining computerized occlusal analysis and electromyography is presented linking opposing posterior tooth friction and muscular hyperactivity to Dentin Hypersensitivity. This chapter proffers how occlusion, muscular TMD symptoms, and frictional Dentin Hypersensitivity are all related. Lastly, a Pilot Study is presented that used a Visual Numerical Analog scale to quantify Dentin Hypersensitivity resolution observed in symptomatic patients who underwent the Immediate Complete Anterior Guidance Development (ICAGD) coronoplasty. This computer-guided occlusal adjustment eliminated pretreatment FDH symptomatology, further supporting that Dentinal Hypersensitivity has an occlusally-based, frictional etiology.


Author(s):  
Robert Anselmi ◽  
Robert B. Kerstein, DMD

The newly designed T-Scan 10 Computerized Occlusal Analysis system represents the state of the art in occlusal diagnosis. The reliability of the system's high definition recording sensors, the many occlusal analysis timing and force software features, and the modern-day computer hardware electronics that record occlusal function in 0.003 second real-time increments, affords a clinician unparalleled occlusal contact timing and force information, with which to predictably diagnose and treat many occlusal abnormalities. T-Scan 10 represents the culmination of 34 years of T-Scan technology innovation development. T-Scan 10 has revised desktop graphics with additional toolbar buttons that enhance T-Scan functionality and improve chairside T-Scan clinical implementation. The system's most recent important advancement, discussed in this chapter, is the melding of T-Scan digital occlusal force and timing data with digitally-scanned dental arches to overlay T-Scan data on a patient's virtual arch. This is a major system upgrade that inserts the T-Scan technology directly into the digital dentistry revolution presently arising in dental medicine. The chapter details the five useful diagnostic occlusal recordings employed when treating commonly observed occlusal problems, and lastly outlines the three learning levels of T-Scan mastery that must be accomplished for a clinician to become an effective and competent T-Scan user.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Doaa R. M. Ahmed ◽  
Diana G. Shaath ◽  
Jomana B. Alakeel ◽  
Abdulaziz A. Samran

Noncarious cervical lesions (NCCLs) are a common clinical finding often linked with dentin hypersensitivity (DH). Aim. The aim of the study was to evaluate the influence of diode laser for the treatment of DH on microleakage of subsequent NCCL restorations. Materials and Methods. Forty-eight extracted human premolars were collected. All teeth received standardized cervical preparation on both the buccal and palatal surfaces and were randomly divided into three groups ( n = 16 ) according to the restorative material used: nanohybrid composite resin (CR), resin-modified glass ionomer (RMGI), and conventional glass ionomer (GIC). The prepared cavities on the palatal surfaces were treated by diode laser using SIROlaser Blue (Sirona Dental Systems, Bensheim, Germany) prior to restoration, while preparations on the buccal surfaces were directly restored. After thermocycling, the teeth were immersed in methylene blue dye for microleakage evaluation under 40x magnification at both occlusal and cervical margins. The Kruskal-Wallis test followed by the Bonferroni tests was conducted to determine inter- and intragroup differences ( P < 0.05 ). Results. All restorative materials tested showed some degree of microleakage with no statistically significantly different scores with or without the use of laser desensitization prior to restorative treatment. Group CR showed the least microleakage, followed by group RMGI, while group GIC showed the highest. Cervical margins showed greater microleakage than the occlusal margins where the difference was statistically significant in the RMGI group without laser pretreatment ( P = 0.006 ) and in both groups CR ( P = 0.02 ) and RMGI ( P = 0.006 ) with the laser pretreatment. Conclusion. Application of diode laser for the treatment of DH prior to the restoration of teeth with NCCL did not affect the microleakage of all the restorative materials tested. All the materials showed some degree of microleakage, which was higher in gingival margins compared to occlusal margins. The resin composite shows the least microleakage among all the tested materials.


Author(s):  
Nick Yiannios, DDS

In the literature, Dentinal Hypersensitivity (DH) is considered to arise from exposed dentin and patent dentinal tubules. However, clinical observation of recurrent DH sensitivity indicates it can occur in the presence or absence of exposed dentin. Quantified occlusal contact force and timing parameters have been ignored in studies assessing hypersensitive teeth. This chapter introduces a novel occlusal concept: Frictional Dental Hypersensitivity (FDH). Clinical evidence from combining computerized occlusal analysis and electromyography is presented linking opposing posterior tooth friction and muscular hyperactivity to Dentin Hypersensitivity. This chapter proffers how occlusion, muscular TMD symptoms, and frictional Dentin Hypersensitivity are all related. Lastly, a Pilot Study is presented that used a Visual Numerical Analog scale to quantify Dentin Hypersensitivity resolution observed in symptomatic patients who underwent the Immediate Complete Anterior Guidance Development (ICAGD) coronoplasty. This computer-guided occlusal adjustment eliminated pretreatment FDH symptomatology, further supporting that Dentinal Hypersensitivity has an occlusally-based, frictional etiology.


Author(s):  
Sarah Qadeer, BDS, MSD ◽  
Lertrit Sarinnaphakorn, DDS

The traditional occlusal indicators used in dental practice are articulation papers, Shim-stock foils, elastomeric impression materials, and occlusal wax strips. These static dental materials have been widely believed to have occlusal force descriptive capability. However, modern material studies are challenging the widespread belief that occlusal indicator materials can measure differing occlusal force levels. This chapter evaluates the force reporting limitations of these static occlusal indicators, and discusses how clinicians subjectively interpret their appearance characteristics to determine differing occlusal force levels. This chapter then compares these non-digital occlusal indicators to the T-Scan computerized occlusal analysis technology, that records and displays precise, quantifiable, relative occlusal force variances, and occlusal contact timing sequences. This digital data aids the clinician in making a more accurate occlusal analysis, and can guide the clinician in the correction of occlusal contact force and timing abnormalities, thereby eliminating the subjectivity that is inherent with traditional occlusal indicator use. This chapter further details the diagnostic occlusal capabilities of the T-Scan's digital force and timing data, by presenting two separate studies that compared measured closure and excursive occlusal contact force and timing parameters in orthodontic and non-orthodontic young adults. A commentary is included regarding the clinical pitfalls of using maximally invasive, subjective interpretation to choose occlusal contacts for treatment instead of employing minimally invasive, computer-guided occlusal contact selection. This last section clearly illustrates to the reader that both patients and dentists will markedly benefit from the implementation of occlusal measurement technology.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mianfang Ruan ◽  
Li Li ◽  
Weiping Zhu ◽  
Tianchen Huang ◽  
Xie Wu

A novel device has been developed to assess eccentric hamstring strength during the Nordic hamstring exercise (NHE) by measuring the contact force at the ankle hook (brace). The purpose of this study was to determine the correlation between the force measured at the ankle hook and the hamstring force estimated by a low extremity model. Thirteen male college sprinters were recruited to perform NHE on an instrumented device Nordbord (Vald Performance, Australia). Contact forces were measured at a sampling rate of 50 Hz at the hooks using the uniaxial load cells. 3D kinematics were measured simultaneously at a sampling rate of 200 Hz using a 16-camera motion analysis system (Vicon Motion Analysis, Oxford, United Kingdom) during the NHE. The data were processed with Visual 3D (C-Motion, Germantown, MD, United States) and OpenSim (NCSRR, Stanford, CA, United States) to calculate the knee joint center’s coordinates and hamstring moment arms during NHE. A static low extremity model was built to estimate the hamstring force during NHE. We have observed a significant but not very high correlation (r2 = 0.58) between peak hamstring force and the peak contact force at the ankle hook. The peak contact force measured at the ankle hook can only explain a little more than half of the variations in peak hamstring muscle forces during NHE. Caution must be exercised when assessing the eccentric hamstring strength using the ankle contact force during NHE.


Author(s):  
Julia Cohen-Levy, DDS, MS, PhD

This chapter reviews T-Scan use in Orthodontics, defines normal T-Scan recordings for orthodontically treated subjects versus untreated subjects, and explains T-Scan use in the case-finishing process. After orthodontic appliance removal changes in the occlusion result from “settling,” because teeth can move freely within the periodontium. Despite a post treatment, visually “perfect” Angle's Class I relationship, ideal occlusal contacts often do not result solely from tooth movement. Creating simultaneous and equal contacts following fixed appliance removal can be accomplished using T-Scan data to optimize the end-result occlusal contact pattern. The software's force distribution and timing indicators (the 2 and 3-Dimensional ForceViews, force percentage per tooth and arch half, the Center of Force, and the Occlusion and Disclusion Times) aid in obtaining an ideal occlusal force distribution during case-finishing. Several case reports highlight combining lingual orthodontic treatment with Orthognathic surgery, where each presented case utilized T-Scan data during active treatment and retention.


Author(s):  
Patrick Girouard, DMD MS

The nature of the interrelationship between whole body posture and the quality of the dental occlusion has not yet to date been clearly documented within the dental or posture literature, as the findings of published studies within both fields have been scarce and inconclusive. The combined use of digital diagnostic occlusal and postural assessment technologies has not been widely employed in these research projects, which has mired both fields' ability to study, to understand, and to clearly ascertain how posture and dental occlusion affect each other physiologically. As such, the specific aims of this chapter are to outline how posture and dental occlusion interrelate through the stomatognathic system's afferent neural inputs into the central nervous system (CNS), which communicate important occlusal contact force distribution information, and equally as important, mandibular spatial positional information within the posture and balance regions of the brain. The concept that the dental occlusion is a capteur for posture (which in English means, a sensor of posture health), is further explored with the inclusion of three differing clinical posturo-occlusal cases, diagnosed and treated with the combined use of the T-Scan 9 computerized occlusal analysis technology, the MatScan/MobileMat foot pressure mapping technology, and the Footmat Research software version 7.10. These presented clinical cases illustrate that improved right-to-left occlusal contact force balance, and improved center of force location within the dental arches, improve a number of measurable sway parameters. Together, the implementation of the T-Scan and the MatScan exquisitely demonstrate to the clinician the significance of the physiologic interrelationship between body posture and the dental occlusion. The presented cases emphasize there exists a whole-body concept that depends upon a variety of differing systems, whereby changes in the dental occlusion produce a phenomenon of bio-functional neuro-reprogramming for the stomatognathic system and the whole body.


Author(s):  
Erika Michele dos Santos Araújo ◽  
Bárbara Fávero Araújo Lima ◽  
Júlia Gomes Lúcio de Araújo ◽  
Fernanda Cristina Nogueira Rodrigues ◽  
Stella Ferreira do Amaral ◽  
...  

Objective: This case report proposes a treatment for dentin hypersensitivity (DH) using photobiomodulation (PBT) with low power diode laser. Methods and Results: Male patient, 28 years old, reporting “dental sensitivity,” diagnosed by anamnesis and intraoral examination, with non-carious cervical lesions (NCCL) and DH on teeth 15 to 25, with different pain intensities, measured with visual analogue scale (VAS). For DH treatment, a PBT was proposed, with 808nm, 100mW, 20s and 2J of energy, applied during 3 sessions, with one-week interval and reevaluation after 30 days. After the first session, the patient reported improvement of sensitivity in all teeth, except for 15, that remained sensitive even during the reevaluation. Conclusion: PBT was effective in DH treatment, with desensitization being observed for 30 days in 90% of treated teeth.


Sign in / Sign up

Export Citation Format

Share Document