Cloud-Centric Blockchain Public Key Infrastructure for Big Data Applications

Author(s):  
Brian Tuan Khieu ◽  
Melody Moh

A cloud-based public key infrastructure (PKI) utilizing blockchain technology is proposed. Big data ecosystems have scalable and resilient needs that current PKI cannot satisfy. Enhancements include using blockchains to establish persistent access to certificate data and certificate revocation lists, decoupling of data from certificate authority, and hosting it on a cloud provider to tap into its traffic security measures. Instead of holding data within the transaction data fields, certificate data and status were embedded into smart contracts. The tests revealed a significant performance increase over that of both traditional and the version that stored data within blocks. The proposed method reduced the mining data size, and lowered the mining time to 6.6% of the time used for the block data storage method. Also, the mining gas cost per certificate was consequently cut by 87%. In summary, completely decoupling the certificate authority portion of a PKI and storing certificate data inside smart contracts yields a sizable performance boost while decreasing the attack surface.

In the cryptocurrency era, Blockchain is one of the expeditiously growing information technologies that help in providing security to the data. Data tampering and authentication problems generally occur in centralized servers while sharing and storing the data. Blockchain provides the platform for big data and cloud storage in enhancing the security by evading from pernicious users. In this paper, we have discussed the exhaustive description of blockchain and its need, features and applications. Analysis of blockchain is done for different domains such as big data, cloud, internet of things and mobile cloud where the differences V’s are compared with big data and blockchain. SWOT (Strength Weakness Opportunities Threats) analysis is performed to address the merits and limitations in blockchain technology. The survey in aspects of data security, data storage, data sharing and data authentication through blockchain technology is done and the challenges are discussed to overcome the problem that leads in big data and cloud storage. The detailed comparative analysis proves that the blockchain technology overcomes the problems in big data storage and data security in cloud.


In computer based system, key for the problem of identification, authentication and secrecy can be found in the field of cryptography. Dependence on public key infrastructure and to receive certificates signed by Certificate Authority (CA) to authenticate oneself for exchange of encrypted messages is one of the most significant limitation for the widespread adoption of Public Key Cryptography (PKC) as this process is time engrossing and error prone. Identity based cryptography (IBC) aspires to reduce the certificate and key management overhead of PKC. IBC’s important primordial is Identity-based Encryption (IBE). IBE provided emergent for perception of Identity based signature (IBS) schemes. In this paper, overview of IBE and IBS schemes has been given. Also, a survey on various IBE and IBS schemes has been performed to review different problems related to them. Finally, feasibility and applicability of IBC in current and future environments has been discussed.


2018 ◽  
Vol 2 (3) ◽  
pp. 11-18 ◽  
Author(s):  
Junaid Chaudhry ◽  
Kashif Saleem ◽  
Paul Haskell-Dowland ◽  
Mahdi H. Miraz

A Certificate Authority (CA) provides the critical authentication and security services for Public Key Infrastructure (PKI) which are used for the Internet and wired networks. In MANETs (wireless and ad hoc) there is an inability to offer a centralized CA to provide these security services. Recent research has looked to facilitate the use of CAs within MANETs through the use of a Distributed Certificate Authority (DCA) for wireless and ad hoc networks. This paper presents a number of different types of DCA protocols and categorizes them into groups based on their factors and specifications. The paper concludes by proposing the best DCA security services in terms of performance and level of security


2021 ◽  
Vol 2021 (4) ◽  
pp. 184-202
Author(s):  
Alexandra Dirksen ◽  
David Klein ◽  
Robert Michael ◽  
Tilman Stehr ◽  
Konrad Rieck ◽  
...  

Abstract HTTPS is a cornerstone of privacy in the modern Web. The public key infrastructure underlying HTTPS, however, is a frequent target of attacks. In several cases, forged certificates have been issued by compromised Certificate Authorities (CA) and used to spy on users at large scale. While the concept of Certificate Transparency (CT) provides a means for detecting such forgeries, it builds on a distributed system of CT logs whose correctness is still insufficiently protected. By compromising a certificate authority and the corresponding log, a covert adversary can still issue rogue certificates unnoticed. We introduce LogPicker, a novel protocol for strengthening the public key infrastructure of HTTPS. LogPicker enables a pool of CT logs to collaborate, where a randomly selected log includes the certificate while the rest witness and testify the certificate issuance process. As a result, CT logs become capable of auditing the log in charge independently without the need for a trusted third party. This auditing forces an attacker to control each participating witness, which significantly raises the bar for issuing rogue certificates. LogPicker is efficient and designed to be deployed incrementally, allowing a smooth transition towards a more secure Web.


Symmetry ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1640
Author(s):  
Chong-Gee Koa ◽  
Swee-Huay Heng ◽  
Ji-Jian Chin

Public Key Infrastructure (PKI) is the fundamental of secure digital communications. It provides a secure means to authenticate identities over the Internet. Symmetric or asymmetric encryption schemes are widely used in identity authentication in any kind of PKI. The conventional PKI has several drawbacks due to the centralized and non-transparent design. Several recent research works utilize blockchain technology to overcome the limitations of conventional implementations of PKI. Blockchain-based PKI integrates blockchain technology with PKI to form a new type of decentralized PKI (DPKI). Several works utilize the currency property in blockchains to implement the reward-and-punishment mechanism. In this paper, we propose a smart contract-based PKI which utilizes the Ethereum smart contract to build a new type of blockchain-based PKI with the reward-and-punishment mechanism using ERC-20 tokens. It has several advantages over previous implementations of similar research that use Ethereum’s main currency—Ether.


2019 ◽  
Vol 8 (3) ◽  
pp. 6592-6595

This paper describes various challenges faced by the Big Data cloud providers and the challenges encountered by its users. This foreshadows that the Serverless computing as the feasible platform for Big Data application’s data storages. The literature research undertaken focuses on various Serverless computing architectural designs, computational methodologies, performance, data movement and functions. The framework for Serverless cloud computing is discussed and its performance is tested for the metric of scaling in the Serverless cloud storage for Big Data applications. The results of the analyses and its outcome are also discussed. Thus suggesting that the scaling of Serverless cloud storage for data storage during random load increase as the optimal solution for cloud provider and Big Data application user.


2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Maliha Sultana ◽  
Afrida Hossain ◽  
Fabiha Laila ◽  
Kazi Abu Taher ◽  
Muhammad Nazrul Islam

Abstract Background Data security has been a critical topic of research and discussion since the onset of data sharing in e-health systems. Although digitalization of data has increased efficiency and speed, it has also made data vulnerable to cyber attacks. Medical records in particular seem to be the regular victims of hackers. Several data breach incidents throughout history have warranted the invention of security measures against these threats. Although various security procedures like firewalls, virtual private networks, encryption, etc are present, a mix of these approaches are required for maximum security in medical image and data sharing. Methods Relatively new, blockchain has become an effective tool for safeguarding sensitive information. However, to ensure overall protection of medical data (images), security measures have to be taken at each step, from the beginning, during and even after transmission of medical images which is ensured by zero trust security model. In this research, a number of studies that deal with these two concepts were studied and a decentralized and trustless framework was proposed by combining these two concepts for secured medical data and image transfer and storage. Results Research output suggested blockchain technology ensures data integrity by maintaining an audit trail of every transaction while zero trust principles make sure the medical data is encrypted and only authenticated users and devices interact with the network. Thus the proposed model solves a lot of vulnerabilities related to data security. Conclusions A system to combat medical/health data vulnerabilities has been proposed. The system makes use of the immutability of blockchain, the additional security of zero trust principles, and the scalability of off chain data storage using Inter Planetary File Systems (IPFS). The adoption of this system suggests to enhance the security of medical or health data transmission.


In computer based system, key for the problem of identification, authentication and secrecy can be found in the field of cryptography. Dependence on public key infrastructure and to receive certificates signed by Certificate Authority (CA) to authenticate oneself for exchange of encrypted messages is one of the most significant limitation for the widespread adoption of Public Key Cryptography (PKC) as this process is time engrossing and error prone. Identity based cryptography (IBC) aspires to reduce the certificate and key management overhead of PKC. IBC’s important primordial is Identity-based Encryption (IBE). IBE provided emergent for perception of Identity based signature (IBS) schemes. In this paper, overview of IBE and IBS schemes has been given. Also, a survey on various IBE and IBS schemes has been performed to review different problems related to them. Finally, feasibility and applicability of IBC in current and future environments has been discussed


Sign in / Sign up

Export Citation Format

Share Document