Semantic Integration and Knowledge Discovery for Environmental Research

Author(s):  
Zhiyuan Chen ◽  
Aryya Gangopadhyay ◽  
George Karabatis ◽  
Michael McGuire ◽  
Claire Welty

Environmental research and knowledge discovery both require extensive use of data stored in various sources and created in different ways for diverse purposes. We describe a new metadata approach to elicit semantic information from environmental data and implement semantics-based techniques to assist users in integrating, navigating, and mining multiple environmental data sources. Our system contains specifications of various environmental data sources and the relationships that are formed among them. User requests are augmented with semantically related data sources and automatically presented as a visual semantic network. In addition, we present a methodology for data navigation and pattern discovery using multi-resolution browsing and data mining. The data semantics are captured and utilized in terms of their patterns and trends at multiple levels of resolution. We present the efficacy of our methodology through experimental results.

Author(s):  
Zhiyuan Chen

Environmental research and knowledge discovery both require extensive use of data stored in various sources and created in different ways for diverse purposes. We describe a new metadata approach to elicit semantic information from environmental data and implement semantics-based techniques to assist users in integrating, navigating, and mining multiple environmental data sources. Our system contains specifications of various environmental data sources and the relationships that are formed among them. User requests are augmented with semantically related data sources and automatically presented as a visual semantic network. In addition, we present a methodology for data navigation and pattern discovery using multi-resolution browsing and data mining. The data semantics are captured and utilized in terms of their patterns and trends at multiple levels of resolution. We present the efficacy of our methodology through experimental results.


2021 ◽  
Author(s):  
Ekaterina Chuprikova ◽  
Abraham Mejia Aguilar ◽  
Roberto Monsorno

<p>Increasing agricultural production challenges, such as climate change, environmental concerns, energy demands, and growing expectations from consumers triggered the necessity for innovation using data-driven approaches such as visual analytics. Although the visual analytics concept was introduced more than a decade ago, the latest developments in the data mining capacities made it possible to fully exploit the potential of this approach and gain insights into high complexity datasets (multi-source, multi-scale, and different stages). The current study focuses on developing prototypical visual analytics for an apple variety testing program in South Tyrol, Italy. Thus, the work aims (1) to establish a visual analytics interface enabled to integrate and harmonize information about apple variety testing and its interaction with climate by designing a semantic model; and (2) to create a single visual analytics user interface that can turn the data into knowledge for domain experts. </p><p>This study extends the visual analytics approach with a structural way of data organization (ontologies), data mining, and visualization techniques to retrieve knowledge from an extensive collection of apple variety testing program and environmental data. The prototype stands on three main components: ontology, data analysis, and data visualization. Ontologies provide a representation of expert knowledge and create standard concepts for data integration, opening the possibility to share the knowledge using a unified terminology and allowing for inference. Building upon relevant semantic models (e.g., agri-food experiment ontology, plant trait ontology, GeoSPARQL), we propose to extend them based on the apple variety testing and climate data. Data integration and harmonization through developing an ontology-based model provides a framework for integrating relevant concepts and relationships between them, data sources from different repositories, and defining a precise specification for the knowledge retrieval. Besides, as the variety testing is performed on different locations, the geospatial component can enrich the analysis with spatial properties. Furthermore, the visual narratives designed within this study will give a better-integrated view of data entities' relations and the meaningful patterns and clustering based on semantic concepts.</p><p>Therefore, the proposed approach is designed to improve decision-making about variety management through an interactive visual analytics system that can answer "what" and "why" about fruit-growing activities. Thus, the prototype has the potential to go beyond the traditional ways of organizing data by creating an advanced information system enabled to manage heterogeneous data sources and to provide a framework for more collaborative scientific data analysis. This study unites various interdisciplinary aspects and, in particular: Big Data analytics in the agricultural sector and visual methods; thus, the findings will contribute to the EU priority program in digital transformation in the European agricultural sector.</p><p>This project has received funding from the European Union's Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement No 894215.</p>


Author(s):  
Feyza Gürbüz ◽  
Fatma Gökçe Önen

The previous decades have witnessed major change within the Information Systems (IS) environment with a corresponding emphasis on the importance of specifying timely and accurate information strategies. Currently, there is an increasing interest in data mining and information systems optimization. Therefore, it makes data mining for optimization of information systems a new and growing research community. This chapter surveys the application of data mining to optimization of information systems. These systems have different data sources and accordingly different objectives for knowledge discovery. After the preprocessing stage, data mining techniques can be applied on the suitable data for the objective of the information systems. These techniques are prediction, classification, association rule mining, statistics and visualization, clustering and outlier detection.


Author(s):  
Robab Saadatdoost ◽  
Alex Tze Hiang Sim ◽  
Hosein Jafarkarimi ◽  
Jee Mei Hee

This project presents the patterns and relations between attributes of Iran Higher Education data gained from the use of data mining techniques to discover knowledge and use them in decision making system of IHE. Large dataset of IHE is difficult to analysis and display, since they are significant for decision making in IHE. This study utilized the famous data mining software, Weka and SOM to mine and visualize IHE data. In order to discover worthwhile patterns, we used clustering techniques and visualized the results. The selected dataset includes data of five medical university of Tehran as a small data set and Ministry of Science - Research and Technology's universities as a larger data set. Knowledge discovery and visualization are necessary for analyzing of these datasets. Our analysis reveals some knowledge in higher education aspect related to program of study, degree in each program, learning style, study mode and other IHE attributes. This study helps to IHE to discover knowledge in a visualize way; our results can be focused more by experts in higher education field to assess and evaluate more.


High volumes and varieties of data is piling every day from healthcare and related fields. This big data sources if managed and analysed properly will provide vital knowledge. Data mining and data analytics have been playing an important role in extracting useful information from healthcare and related data sources. The knowledge extracted from these data sources guiding patients and healthcare personnel towards improved health conditions. Analytical techniques from statistics, functionalities from data mining and machine learning already proved their capability with significant contributions to healthcare industry. The dominant functionality of data mining is classification which has been in use in mining healthcare data. Though classification is a good learning technique it may not provide a causation model which will be a reliable model for better decision making particularly in the medical field. The present models for causality have limitations in terms of scalability and reliability. The present study is targeted to study causal models for causal relationship mining. This study tried to conclude with some proposals for causal relationship discovery which are efficient, reliable and scalable. The proposed model is going to make use of some qualities of decision trees along with statistical tests and analytics. It is proposed to build the learning models on healthcare big data sources.


Author(s):  
D. Espinoza Molina ◽  
M Datcu

The continuous increase in the size of the archives and in the variety and complexity of Earth-Observation (EO) sensors require new methodologies and tools that allow the end-user to access a large image repository, to extract and to infer knowledge about the patterns hidden in the images, to retrieve dynamically a collection of relevant images, and to support the creation of emerging applications (e.g.: change detection, global monitoring, disaster and risk management, image time series, etc.). In this context, we are concerned with providing a platform for data mining and knowledge discovery content from EO archives. The platform’s goal is to implement a communication channel between Payload Ground Segments and the end-user who receives the content of the data coded in an understandable format associated with semantics that is ready for immediate exploitation. It will provide the user with automated tools to explore and understand the content of highly complex images archives. The challenge lies in the extraction of meaningful information and understanding observations of large extended areas, over long periods of time, with a broad variety of EO imaging sensors in synergy with other related measurements and data. The platform is composed of several components such as 1.) ingestion of EO images and related data providing basic features for image analysis, 2.) query engine based on metadata, semantics and image content, 3.) data mining and knowledge discovery tools for supporting the interpretation and understanding of image content, 4.) semantic definition of the image content via machine learning methods. All these components are integrated and supported by a relational database management system, ensuring the integrity and consistency of Terabytes of Earth Observation data.


2019 ◽  
Author(s):  
Luke Barker ◽  
CJA MacLeod

Social media, particularly Twitter, is increasingly used to improve resilience during extreme weather events/emergency management situations, including floods: by communicating potential risks and their impacts, and informing agencies and responders. In this paper, we developed a prototype national-scale Twitter data mining pipeline for improved stakeholder situational awareness during flooding events across Great Britain, by retrieving relevant social geodata, grounded in environmental data sources (flood warnings and river levels). With potential users we identified and addressed three research questions to develop this application, whose components constitute a modular architecture for real-time dashboards. First, polling national flood warning and river level Web data sources to obtain at-risk locations. Secondly, real-time retrieval of geotagged tweets, proximate to at-risk areas. Thirdly, filtering flood-relevant tweets with natural language processing and machine learning libraries, using word embeddings of tweets. We demonstrated the national-scale social geodata pipeline using over 420,000 georeferenced tweets obtained between 20 and 29th June 2016.


Author(s):  
Ricardo Anderson ◽  
Gunjan Mansingh

Knowledge discovery and data-mining techniques have the potential to provide insights into data that can improve decision making. This paper explores the use of data mining to extract patterns from data in the domain of social welfare. It discusses the application of the Integrated Knowledge Discovery and Data Mining process model (IKDDM) a social welfare programme in Jamaica. Further, it demonstrates how the knowledge acquired from the data is used to develop a knowledge driven decision support system (DSS) in the PATH CCT programme. This system was successfully tested in the domain showing over 94% accuracy in the comparative decisions produced.


2002 ◽  
Vol 01 (04) ◽  
pp. 657-672 ◽  
Author(s):  
BASILIS BOUTSINAS

Data mining is an emerging research area that develops techniques for knowledge discovery in huge volumes of data. Usually, data mining rules can be used either to classify data into predefined classes, or to partition a set of patterns into disjoint and homogeneous clusters, or to reveal frequent dependencies among data. The discovery of data mining rules would not be very useful unless there are mechanisms to help analysts access them in a meaningful way. Actually, documenting and reporting the extracted knowledge is of considerable importance for the successful application of data mining in practice. In this paper, we propose a methodology for accessing data mining rules, which is based on using an expert system. We present how the different types of data mining rules can be transformed into the domain knowledge of any general-purpose expert system. Then, we present how certain attribute values given by the user as facts and/or goals can determine, through a forward and/or backward chaining, the related data mining rules. In this paper, we also present a case study that demonstrates the applicability of the proposed methodology.


Sign in / Sign up

Export Citation Format

Share Document