Study of Protein-Protein Interactions from Multiple Data Sources

Author(s):  
Tu Bao Ho ◽  
Thanh Phuong Nguyen ◽  
Tuan Nam Tran

The objective of this paper is twofold. First is to provide a survey of computational methods for protein-protein interaction (PPI) study. Second is to introduce our work and results in using inductive logic programming to learn prediction rules for PPI and DDI (domain-domain interactions) from multiple data sources. We show advantages of ex-ploiting various types of data in these important problems of bioinformatics.

2008 ◽  
Vol 06 (06) ◽  
pp. 1115-1132 ◽  
Author(s):  
THANH-PHUONG NGUYEN ◽  
TU-BAO HO

Protein–protein interactions (PPIs) are intrinsic to almost all cellular processes. Different computational methods offer new chances to study PPIs. To predict PPIs, while the integrative methods use multiple data sources instead of a single source, the domain-based methods often use only protein domain features. Integration of both protein domain features and genomic/proteomic features from multiple databases can more effectively predict PPIs. Moreover, it allows discovering the reciprocal relationships between PPIs and biological features of their interacting partners. We developed a novel integrative domain-based method for predicting PPIs using inductive logic programming (ILP). Two principal domain features used were domain fusions and domain–domain interactions (DDIs). Various relevant features of proteins were exploited from five popular genomic and proteomic databases. By integrating these features, we constructed biologically significant ILP background knowledge of more than 278,000 ground facts. The experimental results through multiple 10-fold cross-validations demonstrated that our method predicts PPIs better than other computational methods in terms of typical performance measures. The proposed ILP framework can be applied to predict DDIs with high sensitivity and specificity. The induced ILP rules gave us many interesting, biologically reciprocal relationships among PPIs, protein domains, and PPI-related genomic/proteomic features. Supplementary material is available at .


Author(s):  
Morihiro Hayashida ◽  
Tatsuya Akutsu

Protein-protein interactions play various essential roles in cellular systems. Many methods have been developed for inference of protein-protein interactions from protein sequence data. In this paper, the authors focus on methods based on domain-domain interactions, where a domain is defined as a region within a protein that either performs a specific function or constitutes a stable structural unit. In these methods, the probabilities of domain-domain interactions are inferred from known protein-protein interaction data and protein domain data, and then prediction of interactions is performed based on these probabilities and contents of domains of given proteins. This paper overviews several fundamental methods, which include association method, expectation maximization-based method, support vector machine-based method, linear programming-based method, and conditional random field-based method. This paper also reviews a simple evolutionary model of protein domains, which yields a scale-free distribution of protein domains. By combining with a domain-based protein interaction model, a scale-free distribution of protein-protein interaction networks is also derived.


Author(s):  
Tatsuya Akutsu ◽  
Morihiro Hayashida

Many methods have been proposed for inference of protein-protein interactions from protein sequence data. This chapter focuses on methods based on domain-domain interactions, where a domain is defined as a region within a protein that either performs a specific function or constitutes a stable structural unit. In these methods, the probabilities of domain-domain interactions are inferred from known protein-protein interaction data and protein domain data, and then prediction of interactions is performed based on these probabilities and contents of domains of given proteins. This chapter overviews several fundamental methods, which include association method, expectation maximization-based method, support vector machine-based method, and linear programmingbased method. This chapter also reviews a simple evolutionary model of protein domains, which yields a scalefree distribution of protein domains. By combining with a domain-based protein interaction model, a scale-free distribution of protein-protein interaction networks is also derived.


Biotechnology ◽  
2019 ◽  
pp. 406-427
Author(s):  
Morihiro Hayashida ◽  
Tatsuya Akutsu

Protein-protein interactions play various essential roles in cellular systems. Many methods have been developed for inference of protein-protein interactions from protein sequence data. In this paper, the authors focus on methods based on domain-domain interactions, where a domain is defined as a region within a protein that either performs a specific function or constitutes a stable structural unit. In these methods, the probabilities of domain-domain interactions are inferred from known protein-protein interaction data and protein domain data, and then prediction of interactions is performed based on these probabilities and contents of domains of given proteins. This paper overviews several fundamental methods, which include association method, expectation maximization-based method, support vector machine-based method, linear programming-based method, and conditional random field-based method. This paper also reviews a simple evolutionary model of protein domains, which yields a scale-free distribution of protein domains. By combining with a domain-based protein interaction model, a scale-free distribution of protein-protein interaction networks is also derived.


2010 ◽  
Vol 391 (4) ◽  
Author(s):  
Veronika Stoka ◽  
Vito Turk

Abstract The kallikrein-kinin and renin-angiotensin (KKS-RAS) systems represent two highly regulated proteolytic systems that are involved in several physiological and pathological processes. Although their protein-protein interactions can be studied using experimental approaches, it is difficult to differentiate between direct physical interactions and functional associations, which do not involve direct atomic contacts between macromolecules. This information can be obtained from an atomic-resolution characterization of the protein interfaces. As a result of this, various three-dimensional-based protein-protein interaction databases have become available. To gain insight into the multilayered interaction of the KKS-RAS systems, we present a protein network that is built up on three-dimensional domain-domain interactions. The essential domains that link these systems are as follows: Cystatin, Peptidase_C1, Thyroglobulin_1, Insulin, CIMR (Cation-independent mannose-6-phosphate receptor repeat), fn2 (Fibronectin type II domain), fn1 (Fibronectin type I domain), EGF, Trypsin, and Serpin. We found that the CIMR domain is located at the core of the network, thus connecting both systems. From the latter, all domain interactors up to level 4 were retrieved, thus displaying a more comprehensive representation of the KKS-RAS structural network.


Author(s):  
Yu-Miao Zhang ◽  
Jun Wang ◽  
Tao Wu

In this study, the Agrobacterium infection medium, infection duration, detergent, and cell density were optimized. The sorghum-based infection medium (SbIM), 10-20 min infection time, addition of 0.01% Silwet L-77, and Agrobacterium optical density at 600 nm (OD600), improved the competence of onion epidermal cells to support Agrobacterium infection at >90% efficiency. Cyclin-dependent kinase D-2 (CDKD-2) and cytochrome c-type biogenesis protein (CYCH), protein-protein interactions were localized. The optimized procedure is a quick and efficient system for examining protein subcellular localization and protein-protein interaction.


2020 ◽  
Vol 20 (10) ◽  
pp. 855-882
Author(s):  
Olivia Slater ◽  
Bethany Miller ◽  
Maria Kontoyianni

Drug discovery has focused on the paradigm “one drug, one target” for a long time. However, small molecules can act at multiple macromolecular targets, which serves as the basis for drug repurposing. In an effort to expand the target space, and given advances in X-ray crystallography, protein-protein interactions have become an emerging focus area of drug discovery enterprises. Proteins interact with other biomolecules and it is this intricate network of interactions that determines the behavior of the system and its biological processes. In this review, we briefly discuss networks in disease, followed by computational methods for protein-protein complex prediction. Computational methodologies and techniques employed towards objectives such as protein-protein docking, protein-protein interactions, and interface predictions are described extensively. Docking aims at producing a complex between proteins, while interface predictions identify a subset of residues on one protein that could interact with a partner, and protein-protein interaction sites address whether two proteins interact. In addition, approaches to predict hot spots and binding sites are presented along with a representative example of our internal project on the chemokine CXC receptor 3 B-isoform and predictive modeling with IP10 and PF4.


2021 ◽  
Vol 3 (1) ◽  
Author(s):  
Sun Sook Chung ◽  
Joseph C F Ng ◽  
Anna Laddach ◽  
N Shaun B Thomas ◽  
Franca Fraternali

Abstract Direct drug targeting of mutated proteins in cancer is not always possible and efficacy can be nullified by compensating protein–protein interactions (PPIs). Here, we establish an in silico pipeline to identify specific PPI sub-networks containing mutated proteins as potential targets, which we apply to mutation data of four different leukaemias. Our method is based on extracting cyclic interactions of a small number of proteins topologically and functionally linked in the Protein–Protein Interaction Network (PPIN), which we call short loop network motifs (SLM). We uncover a new property of PPINs named ‘short loop commonality’ to measure indirect PPIs occurring via common SLM interactions. This detects ‘modules’ of PPI networks enriched with annotated biological functions of proteins containing mutation hotspots, exemplified by FLT3 and other receptor tyrosine kinase proteins. We further identify functional dependency or mutual exclusivity of short loop commonality pairs in large-scale cellular CRISPR–Cas9 knockout screening data. Our pipeline provides a new strategy for identifying new therapeutic targets for drug discovery.


Sign in / Sign up

Export Citation Format

Share Document