Differential Learning Expert System in Data Management

Author(s):  
R. Manjunath

Expert systems have been applied to many areas of research to handle problems effectively. Designing and implementing an expert system is a difficult job, and it usually takes experimentation and experience to achieve high performance. The important feature of an expert system is that it should be easy to modify. They evolve gradually. This evolutionary or incremental development technique has to be noticed as the dominant methodology in the expert-system area. The simple evolutionary model of an expert system is provided in B. Tomic, J. Jovanovic, & V. Devedzic, 2006. Knowledge acquisition for expert systems poses many problems. Expert systems depend on a human expert to formulate knowledge in symbolic rules. The user can handle the expert systems by updating the rules through user interfaces (J. Jovanovic, D. Gasevic, V. Devedzic, 2004). However, it is almost impossible for an expert to describe knowledge entirely in the form of rules. An expert system may therefore not be able to diagnose a case that the expert is able to. The question is how to extract experience from a set of examples for the use of expert systems.

2012 ◽  
pp. 436-443
Author(s):  
R. Manjunath

Expert systems have been applied to many areas of research to handle problems effectively. Designing and implementing an expert system is a difficult job, and it usually takes experimentation and experience to achieve high performance. The important feature of an expert system is that it should be easy to modify. They evolve gradually. This evolutionary or incremental development technique has to be noticed as the dominant methodology in the expert-system area. The simple evolutionary model of an expert system is provided in B. Tomic, J. Jovanovic, & V. Devedzic, 2006. Knowledge acquisition for expert systems poses many problems. Expert systems depend on a human expert to formulate knowledge in symbolic rules. The user can handle the expert systems by updating the rules through user interfaces (J. Jovanovic, D. Gasevic, V. Devedzic, 2004). However, it is almost impossible for an expert to describe knowledge entirely in the form of rules. An expert system may therefore not be able to diagnose a case that the expert is able to. The question is how to extract experience from a set of examples for the use of expert systems.


2021 ◽  
Vol 13 (9) ◽  
pp. 4640
Author(s):  
Seung-Yeoun Choi ◽  
Sean-Hay Kim

New functions and requirements of high performance building (HPB) being added and several regulations and certification conditions being reinforced steadily make it harder for designers to decide HPB designs alone. Although many designers wish to rely on HPB consultants for advice, not all projects can afford consultants. We expect that, in the near future, computer aids such as design expert systems can help designers by providing the role of HPB consultants. The effectiveness and success or failure of the solution offered by the expert system must be affected by the quality, systemic structure, resilience, and applicability of expert knowledge. This study aims to set the problem definition and category required for existing HPB designs, and to find the knowledge acquisition and representation methods that are the most suitable to the design expert system based on the literature review. The HPB design literature from the past 10 years revealed that the greatest features of knowledge acquisition and representation are the increasing proportion of computer-based data analytics using machine learning algorithms, whereas rules, frames, and cognitive maps that are derived from heuristics are conventional representation formalisms of traditional expert systems. Moreover, data analytics are applied to not only literally raw data from observations and measurement, but also discrete processed data as the results of simulations or composite rules in order to derive latent rule, hidden pattern, and trends. Furthermore, there is a clear trend that designers prefer the method that decision support tools propose a solution directly as optimizer does. This is due to the lack of resources and time for designers to execute performance evaluation and analysis of alternatives by themselves, even if they have sufficient experience on the HPB. However, because the risk and responsibility for the final design should be taken by designers solely, they are afraid of convenient black box decision making provided by machines. If the process of using the primary knowledge in which frame to reach the solution and how the solution is derived are transparently open to the designers, the solution made by the design expert system will be able to obtain more trust from designers. This transparent decision support process would comply with the requirement specified in a recent design study that designers prefer flexible design environments that give more creative control and freedom over design options, when compared to an automated optimization approach.


Author(s):  
R. Manjunath

Expert systems have been applied to many areas of research to handle problems effectively. Designing and implementing an expert system is a difficult job, and it usually takes experimentation and experience to achieve high performance. The important feature of an expert system is that it should be easy to modify. They evolve gradually. This evolutionary or incremental development technique has to be noticed as the dominant methodology in the expert-system area.


1993 ◽  
Vol 8 (1) ◽  
pp. 5-25 ◽  
Author(s):  
William Birmingham ◽  
Georg Klinker

AbstractIn the past decade, expert systems have been applied to a wide variety of application tasks. A central problem of expert system development and maintenance is the demand placed on knowledge engineers and domain experts. A commonly proposed solution is knowledge-acquisition tools. This paper reviews a class of knowledge-acquisition tools that presuppose the problem-solving method, as well as the structure of the knowledge base. These explicit problem-solving models are exploited by the tools during knowledge-acquisition, knowledge generalization, error checking and code generation.


2010 ◽  
Vol 44-47 ◽  
pp. 4081-4083
Author(s):  
Qi Fan ◽  
Ying Zhang ◽  
Ling Hua Jiang ◽  
Yuan Li ◽  
Feng Hou

Knowledge acquisition is the first step in building an expert system. However, it is very difficult to find out the problem-solving approaches from a human expert completely and correctly. Here we implemented the Think-aloud experiment with an expert in architecture. By coding and analyzing the designing process, other researchers could proceed our research and find out the cognitive models corresponded to the approaches and strategies of how experts solved the problems encountered during the normal designing process.


2012 ◽  
Vol 479-481 ◽  
pp. 565-568
Author(s):  
Hong Qi Luo ◽  
Meng Yu Wang

Intelligent CAD system can be formed if integrating the expert system and mechanical CAD. Components of expert system were analyzed, including integrated databases, knowledge bases, knowledge acquisition, inference engine, explanation mechanism and human-computer interface. The model of design-evaluate-redesign was introduced and discussed. Current situation of research on design expert systems was summarized.


Author(s):  
Clive L. Dym

This article discusses the issues that arise in the design and implementation of expert systems. These issues include: task selection; the stages of development of expert system projects; knowledge acquisition; languages and tools; development and run-time environments; and organizational and institutional issues. The article closes with some speculation about the future development of expert systems.


2018 ◽  
Vol 2 (2) ◽  
pp. 530-535 ◽  
Author(s):  
Sella Marselena ◽  
Ause Labellapansa ◽  
Abdul Syukur

Many pets can be played with, socialize and even live together with humans. Numbers of animal clinics have increased to provide care for pets. This study focuses on Dog as pet. Desease and improper treatment of dog will adversely affect the Dog. In dealing with the problem of Dog disease, Dog owners may experience difficulties due to limited number of clinics and veterinarians, especially in rural areas. As a solution, Artificial Intelligence is used by using expert systems that can help inexperienced medical personnel diagnose early symptoms of Dog disease. The search method used in this research is Forward Chaining and Bayes Theorem method to handle uncertainties that arised. Based on knowledge acquisition, 3 diseases were obtained with 38 simptoms and 60 cases. Based on the tests conducted then obtained the sensitivity value of 80%, the value of accuracy of 88.6% indicates that this expert system is able to diagnose dog diseasesKeywords: Dog, Expert System, Forward Chaining, Bayes Theorem.  


Author(s):  
Jeffrey L. Adler ◽  
Eknauth Persaud

One of the greatest challenges in building an expert system is obtaining, representing, and programming the knowledge base. As the size and scope of the problem domain increases, knowledge acquisition and knowledge engineering become more challenging. Methods for knowledge acquisition and engineering for large-scale projects are investigated in this paper. The objective is to provide new insights as to how knowledge engineers play a role in defining the scope and purpose of expert systems and how traditional knowledge acquisition and engineering methods might be recast in cases where the expert system is a component within a larger scale client-server application targeting multiple users.


2020 ◽  
Vol 26 (3) ◽  
pp. 4-12
Author(s):  
Rabia Tehseen ◽  
Muhammad Shoaib Farooq ◽  
Adnan Abid

Fuzzy Expert System (FES) with application to earthquake prediction has been presented to reproduce the performance of a human expert in earthquake prediction using expert systems. This research aims to predict future earthquakes having a magnitude 5.5 or greater. Previous earthquake data from 2000 to 2019 have been collected for this purpose. Since the earthquake data for the specified region have been reported on different magnitude scales, suitable relationships were determined to obtain uniform data. The uniform data have been used to calculate seismicity indicators according to the guidelines provided by Gutenberg-Richter’s scale for quantitative determination of earthquake features. The relationships among these seismic indicators have been used by the human expert to set the rule base of Fuzzy expert system. These rules have been mathematically validated and tested on instrumentally recorded earthquake data. The results obtained from the proposed FES presented 47 % accuracy in predicting future earthquakes that may occur in the 100 km radial area from 34.708 ° N, 72.5478 ° E.


Sign in / Sign up

Export Citation Format

Share Document