Broadcast Quality Video Contribution in Mobility

Author(s):  
José Ramón Cerquides Bueno ◽  
Antonio Foncubierta Rodriguez

The continuous growth of the available throughput, specially in the uplink of mobile phone networks is opening the doors to new services and business opportunities without references in the past. In more concrete, new standards HSDPA/HSUPA, introduced to complement and enhance 3G networks, together with the advances in audio and specially video coding, like those adopted by the standard H.264 AVC have boosted the appearance of a new service: exploiting the mobile telephony networks for contributing broadcast quality videos. This new service is offering just now a low cost, high flexibility alternative that, in a brief period of time, will substitute the current Electronic News Gathering (ENG) Units, giving rise to what is being to be called Wireless Journalism (WENG1 or WiNG2). This chapter discusses both the technologies involved and the business opportunities offered by this sector. Once reviewed the state of the art, different solutions will be compared, some of them recently appeared as commercial solutions, like QuickLink 3.5G Live Encoder3 or AirNow!4 and others still in research and development processes.

2015 ◽  
Vol 2 (3-4) ◽  
pp. 201-205
Author(s):  
Igor Ille ◽  
Sebastian Mojrzisch ◽  
Jens Twiefel

Abstract Ultrasonic actuators are used for a wide field of applications. The vibration energy can be used to realize many processes like ultrasonic welding or bonding. Furthermore there are many processes which run more efficient and faster combined with ultrasonic vibration like ultrasonic-assisted turning or drilling. Piezoelectric transducers are the main part of those applications. Most of the applications have a time-variant load behavior and need an amplitude feedback control to guarantee a stable process. To ensure correct function tests of the feedback control systems have to be done. In this case the processes have to be executed in association with a high number of cycles. To emulate the behavior of the environment the automotive and aerospace industries use hardware in the loop systems since a long time but there is no such a method for ultrasonic systems. This paper presents a method to realize high dynamic load emulation for different ultrasonic applications. Using a piezoelectric transformer it is possible to reproduce load curves by active damping on the secondary side of the transformer using a current proportional digital feedback circuit. A theoretical and experimental study of hardware in the loop system for ultrasonic applications is given by this paper. The present system allows testing a wide field of feedback control algorithms with high flexibility and a high number of cycles by utilization of low-cost components. This proceeding decreases design periods in association with feedback control.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Md Atiqur Rahman ◽  
Mohammad Tariqul Islam ◽  
Mandeep Singh Jit Singh ◽  
Md Samsuzzaman ◽  
Muhammad E. H. Chowdhury

AbstractIn this article, we propose SNG (single negative) metamaterial fabricated on Mg–Zn ferrite-based flexible microwave composites. Firstly, the flexible composites are synthesized by the sol-gel method having four different molecular compositions of MgxZn(1−x)Fe2O4, which are denoted as Mg20, Mg40, Mg60, and Mg80. The structural, morphological, and microwave properties of the synthesized flexible composites are analyzed using X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and conventional dielectric assessment kit (DAK) to justify their possible application as dielectric substrate at microwave frequency regime. Thus the average grain size is found from 20 to 24 nm, and the dielectric constants are 6.01, 5.10, 4.19, and 3.28, as well as loss tangents, are 0.002, 0.004, 0.006, and 0.008 for the prepared Mg–Zn ferrites, i.e., Mg20, Mg40, Mg60, and Mg80 respectively. Besides, the prepared low-cost Mg–Zn ferrite composites exhibit high flexibility and lightweight, which makes them a potential candidate as a metamaterial substrate. Furthermore, a single negative (SNG) metamaterial unit cell is fabricated on the prepared, flexible microwave composites, and their essential electromagnetic behaviors are observed. Very good effective medium ratios (EMR) vales are obtained from 14.65 to 18.47, which ensure the compactness of the fabricated prototypes with a physical dimension of 8 × 6.5 mm2. Also, the proposed materials have shown better performances comparing with conventional FR4 and RO4533 materials, and they have covered S-, C-, X-, Ku-, and K-band of microwave frequency region. Thus, the prepared, flexible SNG metamaterials on MgxZn(1−x)Fe2O4 composites are suitable for microwave and flexible technologies.


2021 ◽  
Author(s):  
Mingming Su ◽  
Yajing Hu ◽  
Ao Yu ◽  
Zhiyao Peng ◽  
Wangtao Long ◽  
...  

Broadband photodetectors fabricated with organic molecules have the advantages of low cost, high flexibility, easy processing and low-temperature requirement. Fullerene molecules, due to the electron acceptor and photoinduced electron transfer...


2011 ◽  
Vol 08 (04) ◽  
pp. 557-575 ◽  
Author(s):  
CHRISTINA RAASCH

Open source (OS) has raised significant attention in industrial practice and in scholarly research as a new and successful mode of product development. This paper is among the first to study open source development processes outside their original context, the software industry. In particular, we investigate the development of tangible products in so-called open design projects. We study how open design projects address the challenges usually put forward in the literature as barriers to the open development of tangible products. The analysis rests on the comparative qualitative investigation of four cases from different industries. We find that, subject to certain contingencies, open design processes can be organized to resemble OSS development processes to a considerable degree. Some practices are established specifically to uphold OS principles in the open design context, while others starkly differ from those found in OSS development. Our discussion focusses on different aspects of modularity as well as the availability of low-cost tools.


2020 ◽  
Author(s):  
Achim J. Herrmann ◽  
Michelle M. Gehringer

1AbstractThe handling of oxygen sensitive samples and growth of obligate anaerobic organisms requires the stringent exclusion of oxygen, which is omnipresent in our normal atmospheric environment. Anaerobic workstations (aka. Glove boxes) enable the handling of oxygen sensitive samples during complex procedures, or the long-term incubation of anaerobic organisms. Depending on the application requirements, commercial workstations can cost up to 60.000 €. Here we present the complete build instructions for a highly adaptive, Arduino based, anaerobic workstation for microbial cultivation and sample handling, with features normally found only in high cost commercial solutions. This build can automatically regulate humidity, H2 levels (as oxygen reductant), log the environmental data and purge the airlock. It is built as compact as possible to allow it to fit into regular growth chambers for full environmental control. In our experiments, oxygen levels during the continuous growth of oxygen producing cyanobacteria, stayed under 0.03 % for 21 days without needing user intervention. The modular Arduino controller allows for the easy incorporation of additional regulation parameters, such as CO2 concentration or air pressure. This paper provides researchers with a low cost, entry level workstation for anaerobic sample handling with the flexibility to match their specific experimental needs.Specifications table[please fill in right-hand column of the table below]


2021 ◽  
Author(s):  
Leah F Rosin ◽  
Jose Gil ◽  
Ines Anna Drinnenberg ◽  
Elissa P Lei

Accurate chromosome segregation during meiosis is essential for reproductive success. Yet, many fundamental aspects of meiosis remain unclear, including the mechanisms regulating homolog pairing across species. This gap is partially due to our inability to visualize individual chromosomes during meiosis. Here, we employ Oligopaint FISH to investigate homolog pairing and compaction of meiotic chromosomes in a classical model system, the silkworm Bombyx mori. Our Oligopaint design combines multiplexed barcoding with secondary oligo labeling for high flexibility and low cost. These studies illustrate that Oligopaints are highly specific in whole-mount gonads and on meiotic chromosome spreads. We show that meiotic pairing is robust in both males and female meiosis. Additionally, we show that meiotic bivalent formation in B. mori males is highly similar to bivalent formation in C. elegans, with both of these pathways ultimately resulting in the pairing of chromosome ends with non-paired ends facing the spindle pole and microtubule recruitment independent of the centromere-specifying factor CENP-A.


2002 ◽  
Vol 48 (3) ◽  
pp. 173-178
Author(s):  
Chunsheng Liu ◽  
Zhihua Wang ◽  
Guoqing Chen ◽  
Yanmei Li ◽  
Ende Wu ◽  
...  
Keyword(s):  
Low Cost ◽  

2009 ◽  
Vol 13 (02) ◽  
pp. 245-271 ◽  
Author(s):  
XIELIN LIU ◽  
FENG-SHANG WU ◽  
WEN-LIN CHU

The rapid diffusion of mobile telephony is an important subject in diffusion studies of innovation. This study attempts to learn how mobile telephony diffuses in China, which has the most mobile telephone subscribers worldwide, in terms of the appropriate growth model and forces driving the diffusion. To identify the appropriate growth model, this study compares the fitness and forecasting ability of three conventional models — the Logistic, Bass, and Gompertz models. The determinants of the diffusion rate are then analyzed based on the most appropriate model. Empirical results, based on data for mobile telephone subscribers in China for 1986–2007, indicate that the Gompertz model performs best. Moreover, the four determinants for the diffusion rate are: number of fixed-line telephone subscribers, the low cost of mobile handsets, pre-paid service and the personal handy-phone system (PHS) service.


2019 ◽  
Vol 90 ◽  
pp. 01004 ◽  
Author(s):  
Saidatul Sophia ◽  
Ebrahim Abouzari Lotf ◽  
Arshad Ahmad ◽  
Pooria Moozarm Nia ◽  
Roshafima Rasit Ali

Graphene oxide (GO) has attracted tremendous attention in membrane-based separation field as it can filter ions and molecules. Recently, GO-based materials have emerged as excellent modifiers for vanadium redox flow battery (VRFB) application. Its high mechanical and chemical stability, nearly frictionless surface, high flexibility, and low cost make GO-based materials as proper materials for the membranes in VRFB. In VRFB, a membrane acts as the key component to determine the performance. Therefore, employing low vanadium ion permeability with excellent stability membrane in vanadium electrolytes is important to ensure high battery performance. Herein, recent progress of GO-modified membranes for VRFB is briefly reviewed. This review begins with current membranes used for VRFB, followed by the challenges faced by the membranes. In addition, the transport mechanism of vanadium ion and the stability properties of GO-modified membranes are also discussed to enlighten the role of GO in the modified membranes.


Sign in / Sign up

Export Citation Format

Share Document