Multithreaded Programming of Reconfigurable Embedded Systems

Author(s):  
Jason Agron ◽  
David Andrews ◽  
Markus Happe ◽  
Enno Lübbers ◽  
Marco Platzner

Embedded and Real-Time (ERTS) systems have continued to expand at a vigorous rate. Designers of ERTS systems are continually challenged to provide new capabilities that can meet the expanding requirements and increased computational needs of each new proposed application, but at a decreasing price/performance ratio. Conventional solutions using general purpose processors or custom ASICs are less and less able to satisfy the contradictory requirements in performance, flexibility, power, development time, and cost. This chapter introduces the concept of generating semi-custom platforms driven from a traditional multithreaded programming model. This approach offers the advantage of achieving productivity levels close to those associated with software by using an established programming model but with a performance level close to custom hardware through the use of a flexible hardware platform capable of adapting to specialized application requirements. We discuss the underlying concepts, requirements and advantages of multithreading in the context of reconfigurable hardware, and present two approaches which provide multithreading support to hardware and software components at the operating system level.

2010 ◽  
Vol 20 (02) ◽  
pp. 103-121 ◽  
Author(s):  
MOSTAFA I. SOLIMAN ◽  
ABDULMAJID F. Al-JUNAID

Technological advances in IC manufacturing provide us with the capability to integrate more and more functionality into a single chip. Today's modern processors have nearly one billion transistors on a single chip. With the increasing complexity of today's system, the designs have to be modeled at a high-level of abstraction before partitioning into hardware and software components for final implementation. This paper explains in detail the implementation and performance evaluation of a matrix processor called Mat-Core with SystemC (system level modeling language). Mat-Core is a research processor aiming at exploiting the increasingly number of transistors per IC to improve the performance of a wide range of applications. It extends a general-purpose scalar processor with a matrix unit. To hide memory latency, the extended matrix unit is decoupled into two components: address generation and data computation, which communicate through data queues. Like vector architectures, the data computation unit is organized in parallel lanes. However, on parallel lanes, Mat-Core can execute matrix-scalar, matrix-vector, and matrix-matrix instructions in addition to vector-scalar and vector-vector instructions. For controlling the execution of vector/matrix instructions on the matrix core, this paper extends the well known scoreboard technique. Furthermore, the performance of Mat-Core is evaluated on vector and matrix kernels. Our results show that the performance of four lanes Mat-Core with matrix registers of size 4 × 4 or 16 elements each, queues size of 10, start up time of 6 clock cycles, and memory latency of 10 clock cycles is about 0.94, 1.3, 2.3, 1.6, 2.3, and 5.5 FLOPs per clock cycle; achieved on scalar-vector multiplication, SAXPY, Givens, rank-1 update, vector-matrix multiplication, and matrix-matrix multiplication, respectively.


2021 ◽  
Author(s):  
Shamsul Haq

The compositions of mango wood-polypropylene composites (WPCs) are formulated, with different compositions of virgin polypropylene (PP) or recycled PP, mango wood waste and a coupling agent. The compositions are fabricated via melt extrusion compounding pursued by injection hot molding. The tests of the prepared compositions are carried out for, water absorption, thickness swelling, surface properties at a nano-scale and interfaced morphology. Comparative study of WPCs composition has done on respective properties. All processing variable conditions are constant for different compositions. The recycled PP based wood composites with or without the coupling agent possessed superior properties in comparison to virgin PP based composites. FESEM images show that coupled composite is having the better bonding strength and smoothness along with a higher dimensional stability in comparison to none coupled composite. Future endeavor should be focused on optimizing the composition of reinforcement wood and recycled plastics matrix according to intended application. The quality of WPCs can also be improved with the co-ordination of latest development in technology and processing technique relevant to them. WPCs study supports “turning waste into something useful”. This provides the mileage in price performance ratio and also the product’s environmental footprints to be adjusted to suit the products application.


1973 ◽  
Vol 13 (1) ◽  
pp. 104
Author(s):  
H. R. Irrgang ◽  
I. L. Burnet

The need to rapidly evaluate the immense quantity of seismic data being acquired by marine and land crews has focused attention on the development of an interactive seismic interpretation system using computer technology.Improvements in hardware and software and in the price/ performance ratio of computers make them more accessible for routine interpretation procedures.Advances in the development of interactive interpretation systems allow the geophysicist to exercise more control over the contouring, datuming, and other functions as the interpretations proceed. He can view graphically the results of major or minor changes in various parameters and their effects on the overall interpretation. Most important, the geophysicist has more time to apply his skills and experience to developing technically and geologically sound evaluations of areas or prospects.


2012 ◽  
Vol 21 (01) ◽  
pp. 1250003 ◽  
Author(s):  
WEIYIN HONG ◽  
XIN KUANG ◽  
JIANHUA SHEN ◽  
TONGQUAN WEI

With the increasing deployment of Wi-Fi devices in portable embedded systems, the low power design at system level has attracted considerable research attention in the recent past. In this paper, based on hardware features and software architecture of the embedded Wi-Fi devices, we focus on dynamic power management, dynamic frequency scaling, and their influences upon the system power and performance. We propose effective and realizable system power management solution and application modes under various application requirements, such as response, bandwidth, and speed. Experimental results show that the proposed solutions can achieve significant energy savings.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Lawrence D. Noble ◽  
Robb W. Colbrunn ◽  
Dong-Gil Lee ◽  
Antonie J. van den Bogert ◽  
Brian L. Davis

Orthopaedic research on in vitro forces applied to bones, tendons, and ligaments during joint loading has been difficult to perform because of limitations with existing robotic simulators in applying full-physiological loading to the joint under investigation in real time. The objectives of the current work are as follows: (1) describe the design of a musculoskeletal simulator developed to support in vitro testing of cadaveric joint systems, (2) provide component and system-level validation results, and (3) demonstrate the simulator’s usefulness for specific applications of the foot-ankle complex and knee. The musculoskeletal simulator allows researchers to simulate a variety of loading conditions on cadaver joints via motorized actuators that simulate muscle forces while simultaneously contacting the joint with an external load applied by a specialized robot. Multiple foot and knee studies have been completed at the Cleveland Clinic to demonstrate the simulator’s capabilities. Using a variety of general-use components, experiments can be designed to test other musculoskeletal joints as well (e.g., hip, shoulder, facet joints of the spine). The accuracy of the tendon actuators to generate a target force profile during simulated walking was found to be highly variable and dependent on stance position. Repeatability (the ability of the system to generate the same tendon forces when the same experimental conditions are repeated) results showed that repeat forces were within the measurement accuracy of the system. It was determined that synchronization system accuracy was 6.7±2.0 ms and was based on timing measurements from the robot and tendon actuators. The positioning error of the robot ranged from 10 μm to 359 μm, depending on measurement condition (e.g., loaded or unloaded, quasistatic or dynamic motion, centralized movements or extremes of travel, maximum value, or root-mean-square, and x-, y- or z-axis motion). Algorithms and methods for controlling specimen interactions with the robot (with and without muscle forces) to duplicate physiological loading of the joints through iterative pseudo-fuzzy logic and real-time hybrid control are described. Results from the tests of the musculoskeletal simulator have demonstrated that the speed and accuracy of the components, the synchronization timing, the force and position control methods, and the system software can adequately replicate the biomechanics of human motion required to conduct meaningful cadaveric joint investigations.


2012 ◽  
Vol 21 (07) ◽  
pp. 1250058
Author(s):  
BINGBING XIA ◽  
FEI QIAO ◽  
ZIDONG DU ◽  
DI ZHU ◽  
HUAZHONG YANG

H.264 video decoder is a good choice for embedded video processing applications because of its higher compression ratio than MPEG2, although it has higher requirements of run-time computational resource. Multi-core system is the future of the embedded processor design for its power efficiency and multi-thread parallelization capability, and can be used to fit well with the requirements for such video processing algorithms. To simulate and evaluate the performance of these multi-core systems effectively, a design flow at the system level is developed, at the higher level, the combination of TLM language (SystemC) and shared-memory parallel programming model (OpenMP) is used for such transaction-level simulation, and at the lower level, a multi-core simulator based on the extension of the SimpleScalar 3.0 ToolSet is developed for the cycle-accurate level simulation. Compared with other high-level simulation methods, ours has the ability to realize the true-parallelization simulation. What is more, experiments show that such simulation methodology can effectively simulate these complex multi-core applications in a short time to get the appropriate core number and the task allocation strategy (much less than RTL-level simulation) and the results can get at less than 15% deviated from the ideal ones calculated based on Amadal's Law, so the parallelization strategy obtained from such simulation is the best one that can be further applied for the RTL-level design of the final multi-core system.


2003 ◽  
Vol 14 (06) ◽  
pp. 723-746 ◽  
Author(s):  
TING-WAI CHIU ◽  
TUNG-HAN HSIEH ◽  
CHAO-HSI HUANG ◽  
TSUNG-REN HUANG

A computational system for lattice QCD with overlap Dirac quarks is described. The platform is a home-made Linux PC cluster, built with off-the-shelf components. At present the system constitutes of 64 nodes, with each node consisting of one Pentium 4 processor (1.6/2.0/2.5 GHz), one Gbyte of PC800/1066 RDRAM, one 40/80/120 Gbyte hard disk, and a network card. The computationally intensive parts of our program are written in SSE2 codes. The speed of our system is estimated to be 70 Gflops, and its price/performance ratio is better than $1.0/Mflops for 64-bit (double precision) computations in quenched QCD. We discuss how to optimize its hardware and software for computing propagators of overlap Dirac quarks.


2002 ◽  
Vol 124 (4) ◽  
pp. 412-418 ◽  
Author(s):  
P. A. Joosse ◽  
D. R. V. van Delft ◽  
Chr. Kensche ◽  
D. Soendergaard ◽  
R. M. van den Berg ◽  
...  

For large off-shore wind turbines, blades with relative low blade mass are becoming more important. The economic use of large-tow carbon fibers can help achieve lower blade masses. Basic material design data have been established for two promising material combinations, including the fatigue properties for Panex33/epoxy. Blade root joints have been developed in a carbon/glass combination, resulting in a better price performance ratio. The initial cost assessment on a blade dominated by severe fatigue loads shows that application of carbon fibers in the spar leads to cost reductions.


Sign in / Sign up

Export Citation Format

Share Document