Advanced Signal Processing Techniques in Non-Destructive Testing

Author(s):  
A. Al-Ataby ◽  
W. Al-Nuaimy

This chapter describes some recent advances in signal processing as applied to NDT problems. This is an area that has made progress for over twenty years and its importance is gaining attention gradually, especially since the new advanced techniques in signal processing and pattern recognition.

2021 ◽  
Vol 11 (24) ◽  
pp. 12168
Author(s):  
Yoonjae Chung ◽  
Seungju Lee ◽  
Wontae Kim

Non-destructive testing (NDT) is a broad group of testing and analysis techniques used in science and industry to evaluate the properties of a material, structure, or system for characteristic defects and discontinuities without causing damage. Recently, infrared thermography is one of the most promising technologies as it can inspect a large area quickly using a non-contact and non-destructive method. Moreover, thermography testing has proved to be a valuable approach for non-destructive testing and evaluation of structural stability of materials. Pulsed thermography is one of the active thermography technologies that utilizes external energy heating. However, due to the non-uniform heating, lateral heat diffusion, environmental noise, and limited parameters of the thermal imaging system, there are some difficulties in detecting and characterizing defects. In order to improve this limitation, various signal processing techniques have been developed through many previous studies. This review presents the latest advances and exhaustive summary of representative signal processing techniques used in pulsed thermography according to physical principles and thermal excitation sources. First, the basic concept of infrared thermography non-destructive testing is introduced. Next, the principle of conventional pulsed thermography and signal processing technologies for non-destructive testing are reviewed. Then, we review advances and recent advances in each signal processing. Finally, the latest research trends are reviewed.


2014 ◽  
Vol 70 (3) ◽  
Author(s):  
Nasarudin Ahmad ◽  
Ruzairi Abdul Rahim ◽  
Herlina Abdul Rahim ◽  
Mohd Hafiz Fazlul Rahiman

Although the technique of using ultrasound has reached maturity by given the extent of the development of sensors, but the use of the various areas still can be explore. Many types of ultrasonic sensors are still at conventional in use especially for measurement equipment in the industry. With the advancement of signal processing techniques, high-speed computing, and the latest techniques in image formation based Non-destructive testing (NDT) methods, the usage of ultrasound in concrete NDT testing is very extensive because the technique is very simple and should not damage the concrete structure to be investigated. Many of the parameters need to be tested using ultrasound techniques to concrete can be realized. Starting with the initial process for of concrete mixing until the concrete matured to the age of century old. Various tests are available to test a variety of non-destructive of concrete completely, in which there is no damage to the concrete, through those where the concrete surface is damaged a bit, to partially destructive testing, such as core tests and insertion and pull-off test, which surface to be repaired after the test. Testing parameter features that can be evaluated using non-destructive testing and destructive testing of some rather large and include basic parameters such as density, elastic modulus and strength and surface hardness and surface absorption, and reinforcement location, size and distance from the surface. In some cases it is also possible to check the quality of the workmanship and structural integrity of the ability to detect voids, cracks and delamination. A review of NDT using ultrasound on concrete are presented in this paper to highlight the important aspect to consider when one to consider the application and development of ultrasound testing on concrete by considering ultrasound signal capturing, processing and presenting.


2013 ◽  
Author(s):  
Ravibabu Mulaveesala ◽  
V. S. Ghali ◽  
Vanita Arora ◽  
Juned A. Siddiqui ◽  
Amarnath Muniyappa ◽  
...  

Author(s):  
Haoran Li ◽  
Yuming Zhang ◽  
Shunyao Wu ◽  
Bin Gao ◽  
Guiyun Tian ◽  
...  

Electromagnetic thermography and optical thermography are both important non-destructive testing (NDT) methods that have been widely used in the fields of modern aerospace, renewable energy, nuclear industry, etc. The excitation modes are crucial whose performances have a decisive effect on the detection results. Previous studies mainly focused on the physics mechanism, applications, and signal processing algorithms. However, the instrument configuration is rarely presented. This paper is to introduces the recently designed excitation sources of electromagnetic thermography and optical thermography detection systems, respectively. These instruments involved L-shaped and Shuttle-shaped sensor structures for electromagnetic thermography and multi-modes excitation for optical thermography. Besides, the topologies and operating principles are shown in detail. Experimental results are carried out to verify the practicability and reliability of the proposed systems.


Sign in / Sign up

Export Citation Format

Share Document