Mobile Laboratory Model for Next-Generation Heterogeneous Wireless Systems

Author(s):  
Ibrahima Ngom ◽  
Hamadou Saliah-Hassane ◽  
Claude Lishou

Failure to integrate heterogeneous wireless systems generally makes it difficult, if not impossible, for the continuation of remote working or remote experiments when human operators and equipment coexist through networks in a collaborative environment. Mobile laboratories using ubiquitous mobile communication for next-generation heterogeneous wireless systems have prospects for increasing the operation of distributed communication and mobile ubiquitous systems. All “technology assessors” concur that tomorrow’s society will have access to smart objects (mobile devices or apparatuses, mobile equipment, e.g. robots) that contain “programs” that will assist with communication in everyday life. However one of the tomorrow’s challenges will consist of programming those objects to cooperate with and control telecommunications technologies. For a Mobile Laboratory to ensure consistent mobility in an environment, it must combine various wireless networks as a single integrated system. In this chapter we propose a Mobile Laboratory Model with mobile devices that take advantage of multiple mobile gateways by using Internet Protocol (IP) as the interconnection protocol to achieve the objective stated above.

Robotics ◽  
2013 ◽  
pp. 1644-1661
Author(s):  
Ibrahima Ngom ◽  
Hamadou Saliah-Hassane ◽  
Claude Lishou

Failure to integrate heterogeneous wireless systems generally makes it difficult, if not impossible, for the continuation of remote working or remote experiments when human operators and equipment coexist through networks in a collaborative environment. Mobile laboratories using ubiquitous mobile communication for next-generation heterogeneous wireless systems have prospects for increasing the operation of distributed communication and mobile ubiquitous systems. All “technology assessors” concur that tomorrow's society will have access to smart objects (mobile devices or apparatuses, mobile equipment, e.g. robots) that contain “programs” that will assist with communication in everyday life. However one of the tomorrow’s challenges will consist of programming those objects to cooperate with and control telecommunications technologies. For a Mobile Laboratory to ensure consistent mobility in an environment, it must combine various wireless networks as a single integrated system. In this chapter we propose a Mobile Laboratory Model with mobile devices that take advantage of multiple mobile gateways by using Internet Protocol (IP) as the interconnection protocol to achieve the objective stated above.


2014 ◽  
Vol 26 (6) ◽  
pp. 750-757 ◽  
Author(s):  
Naoki Uchiyama ◽  
◽  
Dai Kurita ◽  
Shigenori Sano

<div class=""abs_img""><img src=""[disp_template_path]/JRM/abst-image/00260006/08.jpg"" width=""200"" />Human-operated biped robot</div> Object transportation is a basic task for which mechanical systems provide support. Examples of the many types of mobile devices developed thus far are handcarts, unmanned autonomous vehicles, forklifts and turret trucks. Most such vehicles are based on wheeled mobile mechanisms, which would be difficult to use for moving objects in areas with high steps. A walking mobile mechanism, in contrast, enables steps to be ascended and descended, so it is expected that walking mechanisms could support object transportation in environments with stairs or steps. In this paper, we present a biped robot that supports object transportation involving stairs instead of human operators doing so. We start with the design of a biped robot with four actuators for one each for the hips and knees of each leg. Dynamics of the biped robot is then derived for simulation in which force applied by a human operator and a reaction from the ground are considered. A controller is presented for transporting objects up stairs having an unknown step height. Experimental results and photos confirm that the developed system successfully climbs the stairs of unknown height during human operation. </span>


2019 ◽  
pp. 64-72
Author(s):  
G.G. Arunyants

The results of analysis of problems of regulation of gas supply complex of Kaliningrad region and main ways to increase its efficiency, as well as basic solutions for creation of a software complex Т-GAZ-2 automated calculation of natural gas tariffs for ACS of gas supply system subjects, geographically distributed and information connected to the regional automated information and control system (RAIS).


Photonics ◽  
2020 ◽  
Vol 8 (1) ◽  
pp. 3
Author(s):  
Shun Qin ◽  
Wai Kin Chan

Accurate segmented mirror wavefront sensing and control is essential for next-generation large aperture telescope system design. In this paper, a direct tip–tilt and piston error detection technique based on model-based phase retrieval with multiple defocused images is proposed for segmented mirror wavefront sensing. In our technique, the tip–tilt and piston error are represented by a basis consisting of three basic plane functions with respect to the x, y, and z axis so that they can be parameterized by the coefficients of these bases; the coefficients then are solved by a non-linear optimization method with the defocus multi-images. Simulation results show that the proposed technique is capable of measuring high dynamic range wavefront error reaching 7λ, while resulting in high detection accuracy. The algorithm is demonstrated as robust to noise by introducing phase parameterization. In comparison, the proposed tip–tilt and piston error detection approach is much easier to implement than many existing methods, which usually introduce extra sensors and devices, as it is a technique based on multiple images. These characteristics make it promising for the application of wavefront sensing and control in next-generation large aperture telescopes.


Author(s):  
Debabrata Sarddar ◽  
Joydeep Banerjee ◽  
Souvik Kumar Saha ◽  
M.K. Naskar ◽  
Tapas Jana ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document