Food Grade Microorganisms for Nutraceutical Production for Industrial Applications

2022 ◽  
pp. 985-1011
Author(s):  
Hemansi ◽  
Raj Kamal Vibhuti ◽  
Rishikesh Shukla ◽  
Rishi Gupta ◽  
Jitendra Kumar Saini

Nutraceuticals are the food ingredients which have a proven beneficial effect on human health. These include low calories sugars, proteins and vitamins B complex, etc. Microorganisms, such as Lactococcus lactis, are ideal microbial cell factories for the production of these nutraceuticals. Developments in the genetic engineering of food-grade microorganisms have been very helpful for enhanced production or overexpression of nutraceuticals. This chapter describes the use of food grade microorganisms in industrial production of nutraceuticals. The main emphasis is on industrial production of these beneficial nutraceuticals by food grade microorganism. The diversity of microbial cell types, various approaches for improved nutraceutical production through process optimization as well as strain improvement of the producing microorganisms are discussed.

2011 ◽  
Vol 2011 ◽  
pp. 1-9 ◽  
Author(s):  
Verónica Leticia Colin ◽  
Analía Rodríguez ◽  
Héctor Antonio Cristóbal

Insecurity in the supply of fossil fuels, volatile fuel prices, and major concerns regarding climate change have sparked renewed interest in the production of fuels from renewable resources. Because of this, the use of biodiesel has grown dramatically during the last few years and is expected to increase even further in the future. Biodiesel production through the use of microbial systems has marked a turning point in the field of biofuels since it is emerging as an attractive alternative to conventional technology. Recent progress in synthetic biology has accelerated the ability to analyze, construct, and/or redesign microbial metabolic pathways with unprecedented precision, in order to permit biofuel production that is amenable to industrial applications. The review presented here focuses specifically on the role of synthetic biology in the design of microbial cell factories for efficient production of biodiesel.


2019 ◽  
Vol 21 (12) ◽  
pp. 3286-3299 ◽  
Author(s):  
Zong-Feng Hu ◽  
An-Di Gu ◽  
Lan Liang ◽  
Yan Li ◽  
Ting Gong ◽  
...  

A green and sustainable approach is established by metabolic engineering for industrial production of bioactive dammarenediol-II glucosides.


Author(s):  
Anagha Krishnan ◽  
Bonnie A. McNeil ◽  
David T. Stuart

Concerns about climate change and environmental destruction have led to interest in technologies that can replace fossil fuels and petrochemicals with compounds derived from sustainable sources that have lower environmental impact. Fatty alcohols produced by chemical synthesis from ethylene or by chemical conversion of plant oils have a large range of industrial applications. These chemicals can be synthesized through biological routes but their free forms are produced in trace amounts naturally. This review focuses on how genetic engineering of endogenous fatty acid metabolism and heterologous expression of fatty alcohol producing enzymes have come together resulting in the current state of the field for production of fatty alcohols by microbial cell factories. We provide an overview of endogenous fatty acid synthesis, enzymatic methods of conversion to fatty alcohols and review the research to date on microbial fatty alcohol production. The primary focus is on work performed in the model microorganisms, Escherichia coli and Saccharomyces cerevisiae but advances made with cyanobacteria and oleaginous yeasts are also considered. The limitations to production of fatty alcohols by microbial cell factories are detailed along with consideration to potential research directions that may aid in achieving viable commercial scale production of fatty alcohols from renewable feedstock.


Fuel ◽  
2021 ◽  
Vol 298 ◽  
pp. 120858
Author(s):  
Sana Malik ◽  
Ayesha Shahid ◽  
Chen-Guang Liu ◽  
Aqib Zafar Khan ◽  
Muhammad Zohaib Nawaz ◽  
...  

2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenyu Zhang ◽  
Pengfu Liu ◽  
Weike Su ◽  
Huawei Zhang ◽  
Wenqian Xu ◽  
...  

AbstractTrans-4-hydroxy-l-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-l-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-l-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-l-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-l-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-l-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.


Sign in / Sign up

Export Citation Format

Share Document