Climate Change and Crop Production in Africa

2022 ◽  
pp. 1293-1302
Author(s):  
Zerihun Yohannes Amare

Agriculture, particularly crop production, is an economic activity that is highly dependent upon weather and climate in order to produce the food and fiber necessary to sustain human life. The vulnerability of agriculture to climate change and variability is an issue of major importance to the international scientific community. Greenhouse gas (GHG)-induced climate change would very likely result in significant damage in the agricultural sector in sub-Saharan Africa because the region already endures high heat and low precipitation. General circulation models (GCMs) are the primary source of climate change scenarios which make projections about the degree and timing of climate change. Agriculture has always been dependent on the variability of the climate for the growing season and the state of the land at the start of the growing season. The key for adaptation for crop production to climate change is the predictability of the conditions. What is required is an understanding of the effect on the changing climate on land, water, and temperature.

Author(s):  
Zerihun Yohannes Amare

Agriculture, particularly crop production, is an economic activity that is highly dependent upon weather and climate in order to produce the food and fiber necessary to sustain human life. The vulnerability of agriculture to climate change and variability is an issue of major importance to the international scientific community. Greenhouse gas (GHG)-induced climate change would very likely result in significant damage in the agricultural sector in sub-Saharan Africa because the region already endures high heat and low precipitation. General circulation models (GCMs) are the primary source of climate change scenarios which make projections about the degree and timing of climate change. Agriculture has always been dependent on the variability of the climate for the growing season and the state of the land at the start of the growing season. The key for adaptation for crop production to climate change is the predictability of the conditions. What is required is an understanding of the effect on the changing climate on land, water, and temperature.


2020 ◽  
Author(s):  
Sylvia Tramberend ◽  
Günther Fischer ◽  
Harrij van Velthuizen

<p>Climate change threatens vulnerable communities in sub-Saharan Africa who face significant challenges for adaptation. Agriculture provides the livelihood for the majority of population. High-resolution assessments of the effects of climate change on crop production are urgently needed for targeted adaptation planning. In Ghana, next to food needs, agriculture plays an important role on international cocoa markets. To this end, we develop and apply a National Agro-Ecological Zoning system (NAEZ Ghana) to analyze the impacts of high-end (RCP8.5) global warming on agricultural production potentials until the end of this century. NAEZ Ghana uses an ensemble of the CORDEX Africa Regional Climate Model, a regional soil map, to assess development trends of crop production potentials for 19 main crops. Results highlight differential impacts across the country. Especially due to the significant increase in the number of days exceeding high-temperature thresholds, rain-fed production of several food and export crops could be reduced significantly compared to the historical 30-year average (1981-2010). Plantain production, an important food crop, could achieve under climate change less than half of its current potential already in the 2050s and less than 10% by the 2080s. Suitable areas for cocoa production decrease strongly resulting in only one third of production potential compared to today. Other crops with detrimental effects of climate change include oil palm, sugarcane, coffee, and rubber. Production of maize, sorghum, and millet cope well with a future warmer climate. The NAEZ Ghana database provides valuable high-resolution information to support agricultural sector development planning and climate change adaptation strategies. The expansion of irrigation development will play a central role in some areas. This requires further research on Ghana’s linkages between food, water, and energy, taking into account climate and socio-economic changes.</p>


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 753
Author(s):  
Genesis Tambang Yengoh ◽  
Jonas Ardö

Agricultural production in sub-Saharan Africa remains dependent on high inputs of human labor, a situation associated with direct exposure to daylight heat during critical periods of the agricultural calendar. We ask the question: how is the Wet-Bulb Globe Temperature (WBGT) going to be distributed in the future, and how will this affect the ability of smallholder farmers to perform agricultural activities? Data from general circulation models are used to estimate the distribution of WBGT in 2000, 2050 and 2100, and for high activity periods in the agricultural calendar. The distribution of WBGT is divided into recommended maximum WBGT exposure levels (°C) at different work intensities, and rest/work ratios for an average acclimatized worker wearing light clothing (ISO, 18). High WBGTs are observed during the two periods of the East African. In February to March, eastern and coastal regions of Kenya and Tanzania witness high WBGT values—some necessitating up to 75% rest/hour work intensities in 2050 and 2100. In August to September, eastern and northern Kenya and north and central Uganda are vulnerable to high WBGT values. Designing policies to address this key challenge is a critical element in adaptation methods to address the impact of climate change.


2005 ◽  
Vol 360 (1463) ◽  
pp. 2067-2083 ◽  
Author(s):  
Günther Fischer ◽  
Mahendra Shah ◽  
Francesco N. Tubiello ◽  
Harrij van Velhuizen

A comprehensive assessment of the impacts of climate change on agro-ecosystems over this century is developed, up to 2080 and at a global level, albeit with significant regional detail. To this end an integrated ecological–economic modelling framework is employed, encompassing climate scenarios, agro-ecological zoning information, socio-economic drivers, as well as world food trade dynamics. Specifically, global simulations are performed using the FAO/IIASA agro-ecological zone model, in conjunction with IIASAs global food system model, using climate variables from five different general circulation models, under four different socio-economic scenarios from the intergovernmental panel on climate change. First, impacts of different scenarios of climate change on bio-physical soil and crop growth determinants of yield are evaluated on a 5′×5′ latitude/longitude global grid; second, the extent of potential agricultural land and related potential crop production is computed. The detailed bio-physical results are then fed into an economic analysis, to assess how climate impacts may interact with alternative development pathways, and key trends expected over this century for food demand and production, and trade, as well as key composite indices such as risk of hunger and malnutrition, are computed. This modelling approach connects the relevant bio-physical and socio-economic variables within a unified and coherent framework to produce a global assessment of food production and security under climate change. The results from the study suggest that critical impact asymmetries due to both climate and socio-economic structures may deepen current production and consumption gaps between developed and developing world; it is suggested that adaptation of agricultural techniques will be central to limit potential damages under climate change.


2018 ◽  
Vol 4 (12) ◽  
pp. eaat4343 ◽  
Author(s):  
Ariel Ortiz-Bobea ◽  
Erwin Knippenberg ◽  
Robert G. Chambers

A pressing question for climate change adaptation is whether ongoing transformations of the agricultural sector affect its ability to cope with climatic variations. We examine this question in the United States, where major increases in productivity have fueled most of agricultural production growth over the past half-century. To quantify the evolving climate sensitivity of the sector and identify its sources, we combine state-level measures of agricultural productivity with detailed climate data for 1960–2004. We find that agriculture is growing more sensitive to climate in Midwestern states for two distinct but compounding reasons: a rising climatic sensitivity of nonirrigated cereal and oilseed crops and a growing specialization in crop production. In contrast, other regions specialize in less climate-sensitive production such as irrigated specialty crops or livestock. Results suggest that reducing vulnerability to climate change should consider the role of policies in inducing regional specialization.


2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.


2021 ◽  
Author(s):  
Emmanuel Junior Zuza ◽  
Yoseph Negusse Araya ◽  
Kadmiel Maseyk ◽  
Shonil A Bhagwat ◽  
Kaue de Sousa ◽  
...  

Climate change is altering suitable areas of crop species worldwide, with cascading effects on people and animals reliant upon those crop species as food sources. Macadamia is one of Malawi's most important and profitable crop species. Here, we used an ensemble model approach to determine the current distribution of macadamia producing areas across Malawi in relation to climate. For future distribution of suitable areas, we used the climate outputs of 17 general circulation models (GCM's) based on two climate change scenarios (RCP 4.5 and RCP 8.5). We found that the precipitation of the driest month and isothermality were the climatic variables that strongly influenced macadamia's suitability in Malawi. These climatic requirements were fulfilled across many areas in Malawi under the current conditions. Future projections indicated that large parts of Malawi's macadamia growing regions will remain suitable for macadamia, amounting to 36,910 km2 (39.1%) and 33,511 km2 (35.5%) of land based on RCP 4.5 and RCP 8.5, respectively. Of concern, suitable areas for macadamia production are predicted to shrink by −18% (17,015 km2) and −22% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with much of the suitability shifting northwards. Although a net loss of area suitable for macadamia is predicted, some currently unsuitable areas will become suitable in the future. Notably, suitable areas will increase in Malawi's central and northern regions, while the southern region will lose most of its suitable areas. In conclusion, our study provides critical evidence that climate change will significantly affect the macadamia sub-sector in Malawi. Therefore area-specific adaptation strategies are required to build resilience.


2016 ◽  
Vol 24 (1) ◽  
pp. 33-57 ◽  
Author(s):  
Scott Hamilton

We are now told to welcome ourselves to the Anthropocene, a new geological epoch where humanity is ‘literally making’ the planet (Dalby, 2014). Yet, the underlying philosophical foundations of this human-made epoch remain relatively unexplored. This article makes a new contribution by problematizing the Anthropocene using the philosophies of Arendt, Foucault and Heidegger. It argues that the Anthropocene is a new and global form of biopolitics that asserts the essence of all (human) life and industry — the carbon atom — as the measure and centre of everything. When Nature is pre-reflectively projected, quantified and conceived as a calculable and carbonic human construction, then every thinkable object becomes related back to the human as its creator and steward. This is argued by tracing the entwining of computerized general circulation models, nuclear technologies and Earth system science, as well as by critiquing applicationist uses of biopolitics and governmentality in International Relations. What emerges in the Anthropocene, therefore, is an implicit yet powerful form of subjectivism ranging from atomic to global scales, or what is defined here as ‘relationality’. Echoing Heidegger (1977a: 27), in the Anthropocene, ‘It seems as though man everywhere and always encounters only himself’. Welcome, Anthropos, not to an epoch you are making, but to your new global biopolitics of carbon.


Sign in / Sign up

Export Citation Format

Share Document