scholarly journals Mid-Holocene climate change in Europe: a data-model comparison

2007 ◽  
Vol 3 (3) ◽  
pp. 499-512 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of 25 General Circulation Models run for the mid-Holocene period (6 ka BP) with a set of palaeoclimate reconstructions based on over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) similar patterns of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The models were compared by the magnitude and direction of climate change within the region as well as the spatial pattern of these changes. The majority of the models are grouped together, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, although the models are unable to reproduce the exact patterns of change, they all produce the correct signs of change observed for the mid-Holocene.

2006 ◽  
Vol 2 (6) ◽  
pp. 1155-1186 ◽  
Author(s):  
S. Brewer ◽  
J. Guiot ◽  
F. Torre

Abstract. We present here a comparison between the outputs of a set of 25 climate models run for the mid-Holocene period (6 ka BP) with a set of palaeo-climate reconstructions from over 400 fossil pollen sequences distributed across the European continent. Three climate parameters were available (moisture availability, temperature of the coldest month and growing degree days), which were then grouped together using cluster analysis to provide regions of homogenous climate change. Each model was then investigated to see if it reproduced 1) the same directions of change and 2) the correct location of these regions. A fuzzy logic distance was used to compare the output of the model with the data, which allowed uncertainties from both the model and data to be taken into account. The initial comparison showed that the models were only capable of reproducing regions of little climate change, as the data-based reconstructions have a much larger range of changes due to their local nature. A correction for the model standard deviation was then applied to allow the comparison to proceed, and this second test shows that the majority of models simulate all the observed patterns of climatic change, although most do not simulate the observed magnitude of change. The models were then compared by distance to data, and by the amount of correction required. The majority of the models are grouped together both in distance and correction, suggesting that they are becoming more consistent. A test against a set of zero anomalies (no climate change) shows that, whilst the models are unable to reproduce the exact patterns of change, they all produce the correct direction of change for the mid-Holocene.


2020 ◽  
Author(s):  
Peter Nooteboom ◽  
Philippe Delandmeter ◽  
Peter Bijl ◽  
Erik van Sebille ◽  
Henk Dijkstra ◽  
...  

<p>Any type of non-buoyant material in the ocean is transported by currents during its sinking journey. This transport can be far from negligible for typical (plankton) particles with a low sinking velocity. To estimate the lateral transport, the material can be modelled as a set of Lagrangian particles advected by currents that are obtained from Ocean General Circulation Models (OGCMs). State-of-the-art OGCMs are often strongly eddying, providing flow fields with a horizontal resolution of  10km on a daily basis. However, many long term climate modelling studies (e.g. in palaeoclimate) rely on low resolution models that cannot capture mesoscale features. The lower model resolution could influence data-model comparisons using Lagrangian techniques, but this is not properly evaluated yet through a direct comparison.</p><p>In this study, we simulate the transport of sinking Lagrangian particles using low (1°; non-eddying)  and high (0.1°; eddying) horizontal resolution OGCMs of the present-day ocean, and evaluate the effect of the two resolutions on particle transport. We find major differences between the transport in the non-eddying versus the eddying OGCM (in terms of the divergence of particle trajectories and their mean trajectory). Addition of stochastic noise to the particle trajectory parameterizes the effect of eddies well in some regions (e.g. in the North Pacific gyre).</p><p>We recommend to apply sinking Lagrangian particles only in velocity fields with eddying OGCMs, which basically excludes all paleo-simulations. We are currently simulating the equilibrium Eocene (38Ma) climate using an eddying OGCM, to be able to apply these Lagrangian techniques in an eddying ocean of the past. We expect this to lead towards a better agreement between the OGCM and sedimentary fossil microplankton.</p>


2021 ◽  
Author(s):  
Emmanuel Junior Zuza ◽  
Yoseph Negusse Araya ◽  
Kadmiel Maseyk ◽  
Shonil A Bhagwat ◽  
Kaue de Sousa ◽  
...  

Climate change is altering suitable areas of crop species worldwide, with cascading effects on people and animals reliant upon those crop species as food sources. Macadamia is one of Malawi's most important and profitable crop species. Here, we used an ensemble model approach to determine the current distribution of macadamia producing areas across Malawi in relation to climate. For future distribution of suitable areas, we used the climate outputs of 17 general circulation models (GCM's) based on two climate change scenarios (RCP 4.5 and RCP 8.5). We found that the precipitation of the driest month and isothermality were the climatic variables that strongly influenced macadamia's suitability in Malawi. These climatic requirements were fulfilled across many areas in Malawi under the current conditions. Future projections indicated that large parts of Malawi's macadamia growing regions will remain suitable for macadamia, amounting to 36,910 km2 (39.1%) and 33,511 km2 (35.5%) of land based on RCP 4.5 and RCP 8.5, respectively. Of concern, suitable areas for macadamia production are predicted to shrink by −18% (17,015 km2) and −22% (20,414 km2) based on RCP 4.5 and RCP 8.5, respectively, with much of the suitability shifting northwards. Although a net loss of area suitable for macadamia is predicted, some currently unsuitable areas will become suitable in the future. Notably, suitable areas will increase in Malawi's central and northern regions, while the southern region will lose most of its suitable areas. In conclusion, our study provides critical evidence that climate change will significantly affect the macadamia sub-sector in Malawi. Therefore area-specific adaptation strategies are required to build resilience.


2021 ◽  
Author(s):  
Sneha Santy ◽  
Pradeep Mujumdar ◽  
Govindasamy Bala

<p>High industrial discharge, excessive agricultural activities, untreated sewage disposal make the Kanpur region one of the most contaminated stretches of the Ganga river. This study analyses water quality for the combined future climate change and land use land cover scenarios for mid-century for a 238km long Kanpur stretch of Ganga river. Climate change projections from 21 General Circulation Models for the scenarios of RCP 4.5 and RCP 8.5 are considered and Land use Land Cover (LULC) projections are made with QGIS software. Streamflow and water temperature are modelled using the HEC-HMS model and a Water-Air temperature regression model, respectively. Water quality analysis is simulated using the QUAL2K model in terms of nine water quality parameters, dissolved oxygen, biochemical oxygen demand (BOD), ammonia nitrogen, nitrate nitrogen, total nitrogen, organic phosphorus, inorganic phosphorus, total phosphorus and faecal coliform. Climate change impact alone is projected to result in degraded water quality in the future. Combined climate change and LULC change may further degrade water quality, especially at the study area's critical locations. Our study will provide guidance to policymakers to safeguard the Ganga river from further pollution.</p>


2021 ◽  
Author(s):  
Martin Wegmann ◽  
Yvan Orsolini ◽  
Antje Weisheimer ◽  
Bart van den Hurk ◽  
Gerrit Lohmann

<p>As the leading climate mode to explain wintertime climate variability over Europe, the North Atlantic Oscillation (NAO) has been extensively studied over the last decades. Recently, studies highlighted the state of the Northern Hemispheric cryosphere as possible predictor for the wintertime NAO (Cohen et al. 2014). Although several studies could find seasonal prediction skill in reanalysis data (Orsolini et al. 2016, Duville et al. 2017,Han & Sun 2018), experiments with ocean-atmosphere general circulation models (AOGCMs) still show conflicting results (Furtado et al. 2015, Handorf et al. 2015, Francis 2017, Gastineau et al. 2017). </p><p>Here we use two kinds ECMWF seasonal prediction ensembles starting with November initial conditions taken from the long-term reanalysis ERA-20C and forecasting the following three winter months. Besides the 110-year ensemble of 50 members representing internal variability of the atmosphere, we investigate a second ensemble of 20 members where initial conditions are split between low and high snow cover years for the Northern Hemisphere. We compare two recently used Eurasian snow cover indices for their skill in predicting winter climate for the European continent. Analyzing the two forecast experiments, we found that prediction runs starting with high snow index values in November result in significantly more negative NAO states in the following winter (DJF), which in turn modulates near surface temperatures. We track the atmospheric anomalies triggered by the high snow index through the tropo- and stratosphere as well as for the individual winter months to provide a physical explanation for the formation of this particular climate state.</p><p> </p>


<em>Abstract</em>.—Stream fish are expected to be influenced by climate change as they are ectothermic animals living in lotic systems. Using fish presence–absence records in 1,110 stream sites across France, our study aimed at (1) modeling current and future distributions of 35 stream fish species, (2) using an ensemble forecasting approach (i.e., several general circulation models [GCM] × greenhouse gas emission scenarios [GES] × statistical species distribution models [SDM] combinations) to quantify the variability in the future fish species distribution due to each component, and (3) assessing the potential impacts of climate change on fish species distribution and assemblage structure by using a consensus method that accounted for the variability in future projections.


2019 ◽  
Vol 11 (4) ◽  
pp. 1724-1747 ◽  
Author(s):  
M. Allani ◽  
R. Mezzi ◽  
A. Zouabi ◽  
R. Béji ◽  
F. Joumade-Mansouri ◽  
...  

Abstract This study evaluates the impacts of climate change on water supply and demand of the Nebhana dam system. Future climate change scenarios were obtained from five general circulation models (GCMs) of CMIP5 under RCP 4.5 and 8.5 emission scenarios for the time periods, 2021–2040, 2041–2060 and 2061–2080. Statistical downscaling was applied using LARS-WG. The GR2M hydrological model was calibrated, validated and used as input to the WEAP model to assess future water availability. Expected crop growth cycle lengths were estimated using a growing degree days model. By means of the WEAP-MABIA method, projected crop and irrigation water requirements were estimated. Results show an average increase in annual ETo of 6.1% and a decrease in annual rainfall of 11.4%, leading to a 24% decrease in inflow. Also, crops' growing cycles will decrease from 5.4% for wheat to 31% for citrus trees. The same tendency is observed for ETc. Concerning irrigation requirement, variations are more moderated depending on RCPs and time periods, and is explained by rainfall and crop cycle duration variations. As for demand and supply, results currently show that supply does not meet the system demand. Climate change could worsen the situation unless better planning of water surface use is done.


Sign in / Sign up

Export Citation Format

Share Document