Establishing A-Priori Performance Guarantees for Robot Missions that Include Localization Software

2020 ◽  
pp. 117-141
Author(s):  
Damian Lyons ◽  
Ronald C Arkin ◽  
Shu Jiang ◽  
Matthew J O'Brien ◽  
Feng Tang ◽  
...  

One approach to determining whether an automated system is performing correctly is to monitor its performance, signaling when the performance is not acceptable; another approach is to automatically analyze the possible behaviors of the system a-priori and determine performance guarantees. Thea authors have applied this second approach to automatically derive performance guarantees for behavior-based, multi-robot critical mission software using an innovative approach to formal verification for robotic software. Localization and mapping algorithms can allow a robot to navigate well in an unknown environment. However, whether such algorithms enhance any specific robot mission is currently a matter for empirical validation. Several approaches to incorporating pre-existing software into the authors' probabilistic verification framework are presented, and one used to include Monte-Carlo based localization software. Verification and experimental validation results are discussed for real localization missions with this software, showing that the proposed approach accurately predicts performance.

Author(s):  
Damian Lyons ◽  
Ronald C Arkin ◽  
Shu Jiang ◽  
Matthew J O'Brien ◽  
Feng Tang ◽  
...  

One approach to determining whether an automated system is performing correctly is to monitor its performance, signaling when the performance is not acceptable; another approach is to automatically analyze the possible behaviors of the system a-priori and determine performance guarantees. Thea authors have applied this second approach to automatically derive performance guarantees for behavior-based, multi-robot critical mission software using an innovative approach to formal verification for robotic software. Localization and mapping algorithms can allow a robot to navigate well in an unknown environment. However, whether such algorithms enhance any specific robot mission is currently a matter for empirical validation. Several approaches to incorporating pre-existing software into the authors' probabilistic verification framework are presented, and one used to include Monte-Carlo based localization software. Verification and experimental validation results are discussed for real localization missions with this software, showing that the proposed approach accurately predicts performance.


2020 ◽  
pp. 027836492094859
Author(s):  
Yulun Tian ◽  
Kasra Khosoussi ◽  
Jonathan P How

This paper presents resource-aware algorithms for distributed inter-robot loop-closure detection for applications such as collaborative simultaneous localization and mapping (CSLAM) and distributed image retrieval. In real-world scenarios, this process is resource-intensive as it involves exchanging many observations and geometrically verifying a large number of potential matches. This poses severe challenges for small-size and low-cost robots with various operational and resource constraints that limit, e.g., energy consumption, communication bandwidth, and computation capacity. This paper proposes a framework in which robots first exchange compact queries to identify a set of potential loop closures. We then seek to select a subset of potential inter-robot loop closures for geometric verification that maximizes a monotone submodular performance metric without exceeding budgets on computation (number of geometric verifications) and communication (amount of exchanged data for geometric verification). We demonstrate that this problem is, in general, NP-hard, and present efficient approximation algorithms with provable a priori performance guarantees. The proposed framework is extensively evaluated on real and synthetic datasets. A natural convex relaxation scheme is also presented to certify the near-optimal performance of the proposed framework a posteriori.


2018 ◽  
Vol 10 (4) ◽  
pp. 96
Author(s):  
Núbia Angélica de Ávila Branquinho ◽  
Fabiano Guimarães Silva ◽  
Osvaldo Resende ◽  
Luiz Cláudio Almeida Barbosa ◽  
Daniel Emanuel Cabral de Oliveira ◽  
...  

The present study assessed the effects of drying at different temperatures (35, 45 and 55 °C) and air velocities (1 and 2 m s-1) on the content and chemical characteristics of Hyptis pectinata essential oil. Drying was conducted in a fixed-bed dryer, and the temperatures and air velocities were controlled and recorded by an automated system. A 350±0.12 g quantity of fresh leaves was used for each of the four repetitions in each dryer. From the material obtained after drying, 60 g of each repetition was used to extract essential oil by the hydrodistillation method. Dichloromethane was used as the solvent, and anhydrous sodium sulfate was used as the desiccating agent. Gas chromatography in the forms of GC-MS and GC-FID were used for the chemical characterization of the essential oil compounds. Decreasing drying times and decreasing concentrations of essential oils were observed with increasing temperatures. A GC-MS analysis of the essential oil from H. pectinata leaves led to the identification of 19 compounds. A sesquiterpene called caryophyllene oxide was the most abundant compound under all drying conditions, with the highest concentration at a temperature of 55 °C, ranging from approximately 42 to 53%.


2018 ◽  
Vol 2 ◽  
pp. 12-20 ◽  
Author(s):  
Svitlana Popereshnyak ◽  
Anastasia Vecherkovskaya

In the course of the study, the activity of Ukrainian enterprises was analyzed. It was revealed that the main aspects that require increased attention, regardless of the industry, are staff management and order management. The activity of any enterprise consists of fulfilling orders and, as a consequence, satisfying customers. It is proposed to develop an automated system that will enable to keep records of orders, namely: the time of order receipt, the number of products, the urgency, the necessary material and time resources, the priority of the order, the executor, the predicted and actual time of the order. This system will help to organize the work of staff, namely: to optimize the working hours of employees due to the dynamic scheduling of the task list; to introduce responsibility for an order that is tied to a specific employee, to keep records of shifts and working hours, automatically form a payroll with due account of worked shifts/hours. The work designed an automated system for managing orders and staff at middle-class enterprises. The requirements for this system are defined and two types of architecture are proposed. For a better understanding of the design phase of the automated system, a class diagram, activity diagram and interaction diagrams are presented. In the process of research, the end product was created with a user-friendly and intuitive user interface that maximally satisfies all the requirements that have been defined for this system. For today the system works in a test mode at the enterprise of Ukraine. The introduction of the system to the filter element manufacturing company allowed to improve the interaction with customers by 40 % due to faster fulfillment of orders; 80 % facilitate the work of managers to track and control the execution of orders; and also, by 20% increase the efficiency of the staff department. What on the whole positively affected the work of the enterprise as a whole.


Author(s):  
Cynthia Snell

In an effort to find an online-automated electronic resource management system that provides licensing, acquisitions, and statistical information easily, Columbia College of South Carolina journeyed into the world of open source and vender-based applications. During this journey, dead ends and roadblocks paved the way. To encompass all the identified requirements of the online-automated system, a new system needed to be designed.


1983 ◽  
Vol 29 (9) ◽  
pp. 1628-1634 ◽  
Author(s):  
T M Li ◽  
S P Robertson ◽  
T H Crouch ◽  
E E Pahuski ◽  
G A Bush ◽  
...  

Abstract A fully automated bench-top clinical analyzer (OPTIMATE TM; Ames/Gilford) performs homogeneous fluorescent immunoassays, colorimetric immunoassays, and determinations of routine blood analytes; drugs, enzymes, metabolites, specific proteins, and hormones in serum. Unique features include a combination fluorescence/absorbance aspirating thermocuvette, a photon-counting fluorometer/photometer, a multi-reagent distribution valve to dispense as many as three reagents plus buffer, and a user-replaceable programmable memory cartridge for software updates. We have evaluated the performance of OPTIMATE substrate-labeled fluorescent immunoassays for gentamicin, tobramycin, amikacin, theophylline, phenytoin, phenobarbital, primidone, carbamazepine, and quinidine with this automated system. A sample throughput of 92 samples per hour is achieved by reading fixed-point fluorescence results every 39 s after an initial 4-min reaction period. Precision studies indicate typical CVs of less than or equal to 6% for mid-range controls. Standard curves can be reused for as long as two weeks before recalibration. With clinical samples, results by the OPTIMATE procedure correlated well (r greater than or equal to 0.97) with those by a reference method.


2002 ◽  
Vol 8 (3) ◽  
pp. 197-205 ◽  
Author(s):  
Carlos F. Alastruey ◽  
Manuel de la Sen

In this paper, a Lyapunov function candidate is introduced for multivariable systems with inner delays, without assuminga prioristability for the nondelayed subsystem. By using this Lyapunov function, a controller is deduced. Such a controller utilizes an input–output description of the original system, a circumstance that facilitates practical applications of the proposed approach.


2019 ◽  
Vol 11 (23) ◽  
pp. 2827 ◽  
Author(s):  
Narcís Palomeras ◽  
Marc Carreras ◽  
Juan Andrade-Cetto

Exploration of a complex underwater environment without an a priori map is beyond the state of the art for autonomous underwater vehicles (AUVs). Despite several efforts regarding simultaneous localization and mapping (SLAM) and view planning, there is no exploration framework, tailored to underwater vehicles, that faces exploration combining mapping, active localization, and view planning in a unified way. We propose an exploration framework, based on an active SLAM strategy, that combines three main elements: a view planner, an iterative closest point algorithm (ICP)-based pose-graph SLAM algorithm, and an action selection mechanism that makes use of the joint map and state entropy reduction. To demonstrate the benefits of the active SLAM strategy, several tests were conducted with the Girona 500 AUV, both in simulation and in the real world. The article shows how the proposed framework makes it possible to plan exploratory trajectories that keep the vehicle’s uncertainty bounded; thus, creating more consistent maps.


2017 ◽  
Vol 37 (1) ◽  
pp. 3-12 ◽  
Author(s):  
Robert A Hewitt ◽  
Evangelos Boukas ◽  
Martin Azkarate ◽  
Marco Pagnamenta ◽  
Joshua A Marshall ◽  
...  

This paper describes a dataset collected along a 1 km section of beach near Katwijk, The Netherlands, which was populated with a collection of artificial rocks of varying sizes to emulate known rock size densities at current and potential Mars landing sites. First, a fixed-wing unmanned aerial vehicle collected georeferenced images of the entire area. Then, the beach was traversed by a rocker-bogie-style rover equipped with a suite of sensors that are envisioned for use in future planetary rover missions. These sensors, configured so as to emulate the ExoMars rover, include stereo cameras, and time-of-flight and scanning light-detection-and-ranging sensors. This dataset will be of interest to researchers developing localization and mapping algorithms for vehicles traveling over natural and unstructured terrain in environments that do not have access to the global navigation satellite system, and where only previously taken satellite or aerial imagery is available.


Sign in / Sign up

Export Citation Format

Share Document