Temperature Gradient-Based Laser Bending of Full Plates and Plates With Cutout

Author(s):  
Paramasivan Kalvettukaran ◽  
Sandip Das ◽  
Sundar Marimuthu ◽  
Dipten Misra

The laser bending process, also called the laser forming process, consists of irradiating the surface of a sheet or a plate by means of a moving laser beam with a predefined scanning strategy to generate the desired shape through thermally induced residual stress. This chapter presents the mechanisms of a laser bending process and the technological aspects concerning laser v-bending of rectangular AISI 304 plates for full plates and plates with a central cutout at its middle to highlight the process fundamentals and how processing affects the final bending angle of the workpieces. Laser bending involving plates with a cutout will have numerous applications for car bodies, such as front and rear panels where bending is required to be performed on panels with cutout geometries. To investigate the effects of shape and size of the cutout on temperature distribution, stress distribution, and final bending angle, different shapes such as circular, ellipse, rectangular, and square, as well as different dimensions of cutouts have been chosen.

Author(s):  
Alfonso Paoletti

Laser bending is a promising technique utilised in order to deform metal sheets that offers the advantage of requiring no hard tooling and no external forces, thus reducing cost and increasing flexibility. Laser forming involves a complex interaction of many process parameters, ranging from those connected with the irradiation of the laser beam to those regarding the thermal and mechanical properties of the workpiece material. The present work is focused on the laser bending of AISI 304 steel sheets by using of a diode laser. The influence of process parameters, such as the power of laser beam and the scanning speed as well as the metal sheet thickness on the bending angle has been taken into account. The investigation has also analysed the effect of rolling direction of the metal sheets and the conditions of cooling on the bending process.


2010 ◽  
Vol 148-149 ◽  
pp. 590-594
Author(s):  
Yan Jin Guan ◽  
Hong Mei Zhang ◽  
Sheng Sun ◽  
Guo Qun Zhao

Laser bending process of tubes is a new flexible forming process without rigid tools and external forces. The tube is formed by internal thermal stress induced by laser irradiation. The process simulation of laser bending of tubes is realized numerically. When the other parameters remain invariable, the laser bending angle augments with the increase of the laser power. The laser bending angle decreases with the increase of the scanning velocity. Meanwhile, the bending angle varies with the diameter of the laser spot. The angle begins to decrease when the laser spot diameter get to an optimum value. The bending angle enlarges if the scanning wrap angle augments. The bending angle is largest when the scanning wrap angle is 180°. When the scanning wrap angle is over 180°, the bending angle decreases with the increase of the scanning wrap angle. The relationship between the number of scans and the bending angle is about in direct ratio. The bending angle induced by the first irradiated time is the largest.


2006 ◽  
Vol 129 (6) ◽  
pp. 1035-1044 ◽  
Author(s):  
A. J. Birnbaum ◽  
P. Cheng ◽  
Y. L. Yao

Although considerable effort has gone into characterizing the laser forming process in terms of process parameters and conditions, there has been little emphasis on the effects of the mechanical and thermal constraints introduced by the clamping method utilized for a desired application. This research suggests means for investigating and predicting the resulting geometry of a specimen due to laser operation in close proximity to an array of imposed thermo-mechanical constraints for both the single and multiple scan cases; specifically, the resulting average bending angle as well as bending angle variations throughout the part. This is accomplished by initially only considering these effects on the thermal field. Conclusions are then drawn about the nature of the mechanical effects. These conclusions are validated through numerical simulation as well as physical experimentation. An analytical solution of the thermal problem is also presented for further validation of the temperature field as a constrained edge is approached.


2010 ◽  
Vol 431-432 ◽  
pp. 118-121
Author(s):  
Peng Zhang ◽  
Hong Wei Liu

Laser bending process of sheet metals is a highly flexible forming technique. Simulate model of laser bending process was established by dimension analysis, and the control model of laser bending was achieved with the regression of swatch datum. It was shown that dimension analysis was an effective method in simulating the complex laser bending process, and the control model, which came from non-dimension group datum, was a high-accuracy model in predictive analysis of bending angle.


2020 ◽  
Vol 62 (12) ◽  
pp. 1265-1272
Author(s):  
Mustafa Özdemir ◽  
Hakan Dilipak ◽  
Bülent Bostan

Abstract In the study conducted for this contribution, sheet material 4 mm thick, non-heat treated (II), normalized (NH) and tempering heat treatment implemented (TH), were formed at a bending angle of 90°. As a result of the forming process, the effects of the R2, R3, R4, R5, and R6 mm punch tip radii on spring back and spring go values were investigated. The bending operations were carried out by waiting for the punch in the material bending zone for 30 sec and then lifting. The samples were extracted from the middle deformation zone of the II, NH and TH applied sheet material, to which the bending process was applied, following which their ferrite phase, pearlite and martensite structures were microstructurally analyzed. A Minitab analysis program was used to investigate the effect of the bending parameters on the sheet material’s spring-back and spring-go behavior. Moreover, the effects of bending parameters were investigated by creating numerical and mathematical models. Thus, it was determined that spring-go behavior occurred on the II and NH applied sheet material, while spring-back behavior occurred on the TH applied material.


2008 ◽  
Vol 575-578 ◽  
pp. 408-415
Author(s):  
Jie Liu ◽  
Yan Jin Guan ◽  
Sheng Sun ◽  
Guang Chun Wang

There are many factors, such as the laser and geometrical parameters, which influence greatly on the laser bending process. So it is of great importance to determine these variables properly. Considering the relationship of material properties and temperature, a 3-D thermal-mechanical finite element analysis model for laser micro-bending of stainless steel foil is developed based on the software MSC.Marc, and the laser micro-bending process of 0.1mm thick stainless steel foil is implemented. The finite element method simulation process is integrated with the optimization software package iSIGHT through secondary development. The objective function is to realize the maximum bending angle after single laser scan, and laser power, beam diameter and scanning velocity are regarded as the design variables. The forming process is optimized by using genetic algorithm. The optimal result shows the bending angle can be got to the maximum 1.0332°when the laser power, beam diameter and scanning velocity are 32W, 0.17mm and 132mm/s respectively. The experiment results are in good agreement with optimal results.


2012 ◽  
Vol 504-506 ◽  
pp. 1213-1218 ◽  
Author(s):  
Loredana Santo ◽  
Denise Bellisario ◽  
Ludovica Rovatti ◽  
Fabrizio Quadrini

Laser forming tests have been performed on open-cell aluminum alloy foams with different pore size. Laser power was fixed at 150 W, a total of 150 laser scans led to a bending angle up to 60°, depending on the laser scan rate. At the end of the laser bending, the foams were left to cool and samples were extracted for analysis by means of an optic microscope. The alloy microstructure was investigated in different points of the samples and correlated with the processing conditions. Image analysis was also carried out to extract the percentage of melted area due to laser heating.


2021 ◽  
Vol 142 ◽  
pp. 107233
Author(s):  
Reza Masoudi Nejad ◽  
Zohreh Sadat Hoseini Shojaati ◽  
Greg Wheatley ◽  
Danial Ghahremani Moghadam

Sign in / Sign up

Export Citation Format

Share Document