Routing Protocols in Wireless Sensor Networks

2020 ◽  
pp. 40-84
Author(s):  
Nagesh Kumar ◽  
Yashwant Singh

In Wireless Sensor Network (WSN), the routing protocols have been given attention because most of the routing protocols are application and architecture dependent. This chapter presents routing protocols for wireless sensor networks and also classifies routing in WSN. Chapter gives five main classifications of routing protocols in WSN which are data-centric, hierarchical, location-based, network flow and QoS aware and opportunistic routing protocols. The focus has been given on advancement of routing in WSN in form of opportunistic routing, in which the sensor nodes utilize broadcasting nature of wireless links and the data packets can be transmitted through different paths. The routing protocols for WSN are described and discussed under the appropriate classification. A table of comparison of routing protocols on the basis of power usage, data aggregation, scalability, query basis, overhead, data delivery model and QoS parameters has been presented.

Author(s):  
Nagesh Kumar ◽  
Yashwant Singh

In Wireless Sensor Network (WSN), the routing protocols have been given attention because most of the routing protocols are application and architecture dependent. This chapter presents routing protocols for wireless sensor networks and also classifies routing in WSN. Chapter gives five main classifications of routing protocols in WSN which are data-centric, hierarchical, location-based, network flow and QoS aware and opportunistic routing protocols. The focus has been given on advancement of routing in WSN in form of opportunistic routing, in which the sensor nodes utilize broadcasting nature of wireless links and the data packets can be transmitted through different paths. The routing protocols for WSN are described and discussed under the appropriate classification. A table of comparison of routing protocols on the basis of power usage, data aggregation, scalability, query basis, overhead, data delivery model and QoS parameters has been presented.


Author(s):  
A. Radhika ◽  
D. Haritha

Wireless Sensor Networks, have witnessed significant amount of improvement in research across various areas like Routing, Security, Localization, Deployment and above all Energy Efficiency. Congestion is a problem of  importance in resource constrained Wireless Sensor Networks, especially for large networks, where the traffic loads exceed the available capacity of the resources . Sensor nodes are prone to failure and the misbehaviour of these faulty nodes creates further congestion. The resulting effect is a degradation in network performance, additional computation and increased energy consumption, which in turn decreases network lifetime. Hence, the data packet routing algorithm should consider congestion as one of the parameters, in addition to the role of the faulty nodes and not merely energy efficient protocols .Nowadays, the main central point of attraction is the concept of Swarm Intelligence based techniques integration in WSN.  Swarm Intelligence based Computational Swarm Intelligence Techniques have improvised WSN in terms of efficiency, Performance, robustness and scalability. The main objective of this research paper is to propose congestion aware , energy efficient, routing approach that utilizes Ant Colony Optimization, in which faulty nodes are isolated by means of the concept of trust further we compare the performance of various existing routing protocols like AODV, DSDV and DSR routing protocols, ACO Based Routing Protocol  with Trust Based Congestion aware ACO Based Routing in terms of End to End Delay, Packet Delivery Rate, Routing Overhead, Throughput and Energy Efficiency. Simulation based results and data analysis shows that overall TBC-ACO is 150% more efficient in terms of overall performance as compared to other existing routing protocols for Wireless Sensor Networks.


2018 ◽  
Vol 7 (4.12) ◽  
pp. 20
Author(s):  
Navneet Kaur ◽  
Dr. Sahil Verma ◽  
Dr. Kavita

Wireless Sensor Networks(WSNs) comprise sensor nodes which find applications in a wide variety of fields such as medical, wildlife, security, environment, industry. A network communication is initialized and accomplished with the aid of routing protocols. A routing protocol is a set of rules which govern the routing phenomenon. WSNs protocols for the purpose of routing have been the ubiquitous option of the researchers in the recent years due to their exorbitant scope of improvement. The objective of a routing protocol is to inquest for a relevant route amidst sender and receiver to accomplish successful transmission at the destination .Dissipation of energy and lengthening the duration of the network have always been one of the major points of research gaps. As the nodes in WSNs in are battery operated, so they can only use restricted energy to proceed with the communication and transmission operation. To cope up with this, a number of researchers have come up with developments in the field of energy efficacy and optimizations in WSNs routing protocols. A reify summarization of some protocols for routing purposes has been manifested in this paper.


2010 ◽  
Vol 34-35 ◽  
pp. 1019-1023
Author(s):  
Zhao Feng Yang ◽  
Ai Wan Fan

Wireless sensor networks consist of hundreds or thousands of sensor nodes that involve numerous restrictions including computation capability and battery capacity. In this paper we propose an optimal algorithm with genetic algorithm taken into consideration, and compare it with three well known and widely used approaches, i.e., LEACH and LEACH-C, in performance evaluation. Experimental results show that the proposed approach increases the overall network lifetime, and data delivery at the base station than the other routing protocols. Key words: Wireless sensor networks, base station, heuristic optimized genetic algorithm, low energy adaptive clustering hierarchy


2018 ◽  
Vol 14 (2) ◽  
pp. 131-137
Author(s):  
Lanny Sitanayah

Wireless Sensor Networks (WSNs) are subject to failures. Even though reliable routing protocols for WSNs exist and are well-understood, the physical network topology must ensure that alternate routes with an acceptable length to the sinksare in fact available when failures occur. This requires a sensor network deployment to be planned with an objective of ensuring some measure of robustness in the topology, so that when failures do occur the protocols can continue to offer reliable delivery. To ensure that sensor nodes have sufficient paths, it may be necessary to add a number of additional relay nodes, which do not sense, but only forward data from other nodes. In this paper, we review a range of existing algorithms to deploy relay nodes for fault tolerance. We classify the state-of-the-art relay placement algorithms based on routing structures, connectivity requirements, deployment locations, and fault-tolerant requirements.


Wireless sensor network consists of various sensor nodes connected through wireless media. Sensor nodes are tiny devices having lesser energy capabilities. Sensor nodes are either ad-hoc or mobile in their environment. Wireless sensor network route of transmission media is discovered by routing protocols and responsible for secure communication between sensor nodes. Energy is a precious resource of sensor nodes, and the entire lifetime of WSNs is depending on the energy capability of the sensor nodes. The fundamental problem is how to organize topology of WSN for deployed sensor nodes with lesser power consumption as possible. Major problems in wireless sensor networks which consume extra energy are interference, control message overhead, packet delay, unnecessary transmission, and bandwidth utilization. Therefore, energy efficient techniques are needed to overcome these problems. Hierarchical routing is the best routing method for finding optimal path between sensor nodes which enhance the lifetime of the network. This paper focuses towards various hierarchical energy efficient routing in wireless sensor networks and analyzes various features of WSN that should consider during designing of routing protocols.


2021 ◽  
Vol 10 (4) ◽  
pp. 1-16
Author(s):  
Vinay Rishiwal ◽  
Preeti Yadav ◽  
Omkar Singh ◽  
B. G. Prasad

In recent era of IoT, energy ingesting by sensor nodes in Wireless Sensor Networks (WSN) is one of the key challenges. It is decisive to diminish energy ingesting due to restricted battery lifespan of sensor nodes, Objective of this research is to develop efficient routing protocol/algorithm in IoT based scenario to enhance network performance with QoS parameters. Therefore, keeping this objective in mind, a QoS based Optimized Energy Clustering Routing (QOECR) protocol for IoT based WSN is proposed and evaluated. QOECR discovers optimal path for sink node and provides better selection for sub-sink nodes. Simulation has been done in MATLAB to assess the performance of QOECR with pre-existing routing protocols. Simulation outcomes represent that QOECR reduces E2E delay 30%-35%, enhances throughput 25%-30%, minimizes energy consumption 35%-40%, minimizes packet loss 28%-32%, improves PDR and prolongs network lifetime 32%-38% than CBCCP, HCSM and ZEAL routing protocols.


Author(s):  
Volodymyr Mosorov ◽  
Sebastian Biedroń ◽  
Taras Panskyi

In the 21st century wireless sensor networks have gained much popularity due to their flexibility. This progress has enabled the use of sensor nodes on an unprecedented scale and opened new opportunities for the so-called ubiquitous computerization. The total freedom of nodes distribution within the wireless network, where the wireless characteristic is one of the greatest advantages of the use of wireless sensor networks, implies its greatest weakness, i.e. the limitation of mobile power sources. To overcome this challenge specialized routing protocols, such as LEACH, were ushered in for making the effective use of the energy of the nodes themselves. The purpose of this article is to show how the life of a sensor network depends on the number of nodes equipped with a mobile limited power source.


Information ◽  
2019 ◽  
Vol 10 (4) ◽  
pp. 135 ◽  
Author(s):  
Vicente Casares-Giner ◽  
Tatiana Inés Navas ◽  
Dolly Smith Flórez ◽  
Tito R. Vargas H.

In this work it is considered a circular Wireless Sensor Networks (WSN) in a planar structure with uniform distribution of the sensors and with a two-level hierarchical topology. At the lower level, a cluster configuration is adopted in which the sensed information is transferred from sensor nodes to a cluster head (CH) using a random access protocol (RAP). At CH level, CHs transfer information, hop-by-hop, ring-by-ring, towards to the sink located at the center of the sensed area using TDMA as MAC protocol. A Markovian model to evaluate the end-to-end (E2E) transfer delay is formulated. In addition to other results such as the well know energy hole problem, the model reveals that for a given radial distance between the CH and the sink, the transfer delay depends on the angular orientation between them. For instance, when two rings of CHs are deployed in the WSN area, the E2E delay of data packets generated at ring 2 and at the “west” side of the sink, is 20% higher than the corresponding E2E delay of data packets generated at ring 2 and at the “east” side of the sink. This asymmetry can be alleviated by rotating from time to time the allocation of temporary slots to CHs in the TDMA communication. Also, the energy consumption is evaluated and the numerical results show that for a WSN with a small coverage area, say a radio of 100 m, the energy saving is more significant when a small number of rings are deployed, perhaps none (a single cluster in which the sink acts as a CH). Conversely, topologies with a large number of rings, say 4 or 5, offer a better energy performance when the service WSN covers a large area, say radial distances greater than 400 m.


Sign in / Sign up

Export Citation Format

Share Document