Deep Learning in Engineering Education

Author(s):  
Deepali R. Vora ◽  
Kamatchi R. Iyer

The goodness measure of any institute lies in minimising the dropouts and targeting good placements. So, predicting students' performance is very interesting and an important task for educational information systems. Machine learning and deep learning are the emerging areas that truly entice more research practices. This research focuses on applying the deep learning methods to educational data for classification and prediction. The educational data of students from engineering domain with cognitive and non-cognitive parameters is considered. The hybrid model with support vector machine (SVM) and deep belief network (DBN) is devised. The SVM predicts class labels from preprocessed data. These class labels and actual class labels acts as input to the DBN to perform final classification. The hybrid model is further optimised using cuckoo search with Levy flight. The results clearly show that the proposed model SVM-LCDBN gives better performance as compared to simple hybrid model and hybrid model with traditional cuckoo search.

Author(s):  
Deepali R. Vora ◽  
Kamatchi R. Iyer

The goodness measure of any institute lies in minimising the dropouts and targeting good placements. So, predicting students' performance is very interesting and an important task for educational information systems. Machine learning and deep learning are the emerging areas that truly entice more research practices. This research focuses on applying the deep learning methods to educational data for classification and prediction. The educational data of students from engineering domain with cognitive and non-cognitive parameters is considered. The hybrid model with support vector machine (SVM) and deep belief network (DBN) is devised. The SVM predicts class labels from preprocessed data. These class labels and actual class labels act as input to the DBN to perform final classification. The hybrid model is further optimised using cuckoo search with levy flight. The results clearly show that the proposed model SVM-LCDBN gives better performance as compared to simple hybrid model and hybrid model with traditional cuckoo search.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Amjad Khan ◽  
Asfandyar Khan ◽  
Javed Iqbal Bangash ◽  
Fazli Subhan ◽  
Abdullah Khan ◽  
...  

Internet of Things (IoT), an emerging technology, is becoming an essential part of today’s world. Machine learning (ML) algorithms play an important role in various applications of IoT. For decades, the location information has been extremely useful for humans to navigate both in outdoor and indoor environments. Wi-Fi access point-based indoor positioning systems get more popularity, as it avoids extra calibration expenses. The fingerprinting technique is preferred in an indoor environment as it does not require a signal’s Line of Sight (LoS). It consists of two phases: offline and online phase. In the offline phase, the Wi-Fi RSSI radio map of the site is stored in a database, and in the online phase, the object is localized using the offline database. To avoid the radio map construction which is expensive in terms of labor, time, and cost, machine learning techniques may be used. In this research work, we proposed a hybrid technique using Cuckoo Search-based Support Vector Machine (CS-SVM) for real-time position estimation. Cuckoo search is a nature-inspired optimization algorithm, which solves the problem of slow convergence rate and local minima of other similar algorithms. Wi-Fi RSSI fingerprint dataset of UCI repository having seven classes is used for simulation purposes. The dataset is preprocessed by min-max normalization to increase accuracy and reduce computational speed. The proposed model is simulated using MATLAB and evaluated in terms of accuracy, precision, and recall with K-nearest neighbor (KNN) and support vector machine (SVM). Moreover, the simulation results show that the proposed model achieves high accuracy of 99.87%.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ashwini K ◽  
P. M. Durai Raj Vincent ◽  
Kathiravan Srinivasan ◽  
Chuan-Yu Chang

Neonatal infants communicate with us through cries. The infant cry signals have distinct patterns depending on the purpose of the cries. Preprocessing, feature extraction, and feature selection need expert attention and take much effort in audio signals in recent days. In deep learning techniques, it automatically extracts and selects the most important features. For this, it requires an enormous amount of data for effective classification. This work mainly discriminates the neonatal cries into pain, hunger, and sleepiness. The neonatal cry auditory signals are transformed into a spectrogram image by utilizing the short-time Fourier transform (STFT) technique. The deep convolutional neural network (DCNN) technique takes the spectrogram images for input. The features are obtained from the convolutional neural network and are passed to the support vector machine (SVM) classifier. Machine learning technique classifies neonatal cries. This work combines the advantages of machine learning and deep learning techniques to get the best results even with a moderate number of data samples. The experimental result shows that CNN-based feature extraction and SVM classifier provides promising results. While comparing the SVM-based kernel techniques, namely radial basis function (RBF), linear and polynomial, it is found that SVM-RBF provides the highest accuracy of kernel-based infant cry classification system provides 88.89% accuracy.


2021 ◽  
Vol 11 (1) ◽  
pp. 491-508
Author(s):  
Monika Lamba ◽  
Yogita Gigras ◽  
Anuradha Dhull

Abstract Detection of plant disease has a crucial role in better understanding the economy of India in terms of agricultural productivity. Early recognition and categorization of diseases in plants are very crucial as it can adversely affect the growth and development of species. Numerous machine learning methods like SVM (support vector machine), random forest, KNN (k-nearest neighbor), Naïve Bayes, decision tree, etc., have been exploited for recognition, discovery, and categorization of plant diseases; however, the advancement of machine learning by DL (deep learning) is supposed to possess tremendous potential in enhancing the accuracy. This paper proposed a model comprising of Auto-Color Correlogram as image filter and DL as classifiers with different activation functions for plant disease. This proposed model is implemented on four different datasets to solve binary and multiclass subcategories of plant diseases. Using the proposed model, results achieved are better, obtaining 99.4% accuracy and 99.9% sensitivity for binary class and 99.2% accuracy for multiclass. It is proven that the proposed model outperforms other approaches, namely LibSVM, SMO (sequential minimal optimization), and DL with activation function softmax and softsign in terms of F-measure, recall, MCC (Matthews correlation coefficient), specificity and sensitivity.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoyong Liu ◽  
Hui Fu

Disease diagnosis is conducted with a machine learning method. We have proposed a novel machine learning method that hybridizes support vector machine (SVM), particle swarm optimization (PSO), and cuckoo search (CS). The new method consists of two stages: firstly, a CS based approach for parameter optimization of SVM is developed to find the better initial parameters of kernel function, and then PSO is applied to continue SVM training and find the best parameters of SVM. Experimental results indicate that the proposed CS-PSO-SVM model achieves better classification accuracy and F-measure than PSO-SVM and GA-SVM. Therefore, we can conclude that our proposed method is very efficient compared to the previously reported algorithms.


2018 ◽  
Vol 39 (8) ◽  
pp. 1871-1877 ◽  
Author(s):  
Tomoaki Sonobe ◽  
Hitoshi Tabuchi ◽  
Hideharu Ohsugi ◽  
Hiroki Masumoto ◽  
Naohumi Ishitobi ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Mohanad Mohammed ◽  
Henry Mwambi ◽  
Innocent B. Mboya ◽  
Murtada K. Elbashir ◽  
Bernard Omolo

AbstractCancer tumor classification based on morphological characteristics alone has been shown to have serious limitations. Breast, lung, colorectal, thyroid, and ovarian are the most commonly diagnosed cancers among women. Precise classification of cancers into their types is considered a vital problem for cancer diagnosis and therapy. In this paper, we proposed a stacking ensemble deep learning model based on one-dimensional convolutional neural network (1D-CNN) to perform a multi-class classification on the five common cancers among women based on RNASeq data. The RNASeq gene expression data was downloaded from Pan-Cancer Atlas using GDCquery function of the TCGAbiolinks package in the R software. We used least absolute shrinkage and selection operator (LASSO) as feature selection method. We compared the results of the new proposed model with and without LASSO with the results of the single 1D-CNN and machine learning methods which include support vector machines with radial basis function, linear, and polynomial kernels; artificial neural networks; k-nearest neighbors; bagging trees. The results show that the proposed model with and without LASSO has a better performance compared to other classifiers. Also, the results show that the machine learning methods (SVM-R, SVM-L, SVM-P, ANN, KNN, and bagging trees) with under-sampling have better performance than with over-sampling techniques. This is supported by the statistical significance test of accuracy where the p-values for differences between the SVM-R and SVM-P, SVM-R and ANN, SVM-R and KNN are found to be p = 0.003, p =  < 0.001, and p =  < 0.001, respectively. Also, SVM-L had a significant difference compared to ANN p = 0.009. Moreover, SVM-P and ANN, SVM-P and KNN are found to be significantly different with p-values p =  < 0.001 and p =  < 0.001, respectively. In addition, ANN and bagging trees, ANN and KNN were found to be significantly different with p-values p =  < 0.001 and p = 0.004, respectively. Thus, the proposed model can help in the early detection and diagnosis of cancer in women, and hence aid in designing early treatment strategies to improve survival.


2012 ◽  
Vol 16 (11) ◽  
pp. 4417-4433 ◽  
Author(s):  
S. Ismail ◽  
A. Shabri ◽  
R. Samsudin

Abstract. Successful river flow forecasting is a major goal and an essential procedure that is necessary in water resource planning and management. There are many forecasting techniques used for river flow forecasting. This study proposed a hybrid model based on a combination of two methods: Self Organizing Map (SOM) and Least Squares Support Vector Machine (LSSVM) model, referred to as the SOM-LSSVM model for river flow forecasting. The hybrid model uses the SOM algorithm to cluster the entire dataset into several disjointed clusters, where the monthly river flows data with similar input pattern are grouped together from a high dimensional input space onto a low dimensional output layer. By doing this, the data with similar input patterns will be mapped to neighbouring neurons in the SOM's output layer. After the dataset has been decomposed into several disjointed clusters, an individual LSSVM is applied to forecast the river flow. The feasibility of this proposed model is evaluated with respect to the actual river flow data from the Bernam River located in Selangor, Malaysia. The performance of the SOM-LSSVM was compared with other single models such as ARIMA, ANN and LSSVM. The performance of these models was then evaluated using various performance indicators. The experimental results show that the SOM-LSSVM model outperforms the other models and performs better than ANN, LSSVM as well as ARIMA for river flow forecasting. It also indicates that the proposed model can forecast more precisely, and provides a promising alternative technique for river flow forecasting.


2021 ◽  
Vol 11 (4) ◽  
pp. 7296-7301
Author(s):  
H. A. Owida ◽  
A. Al-Ghraibah ◽  
M. Altayeb

The shortage and availability limitation of RT-PCR test kits and is a major concern regarding the COVID-19 pandemic. The authorities' intention is to establish steps to control the propagation of the pandemic. However, COVID-19 is radiologically diagnosable using x-ray lung images. Deep learning methods have achieved cutting-edge performance in medical diagnosis software assistance. In this work, a new diagnostic method for detecting COVID-19 disease is implemented using advanced deep learning. Effective features were extracted using wavelet analysis and Mel Frequency Cepstral Coefficients (MFCC) method, and they used in the classification process using the Support Vector Machine (SVM) classifier. A total of 2400 X-ray images, 1200 of them classified as Normal (healthy) and 1200 as COVID-19, have been derived from a combination of public data sets to verify the validity of the proposed model. The experimental results obtained an overall accuracy of 98.8% by using five wavelet features, where the classification using MFCC features, MFCC-delta, and MFCC-delta-delta features reached accuracy around 97% on average. The results show that the proposed model has reached the required level of success to be applicable in COVID 19 diagnosis.


Sign in / Sign up

Export Citation Format

Share Document