Analysis of Performance Characteristics by Firefly Algorithm-Based Electro Discharge Machining of SS 316

Author(s):  
Premangshu Mukhopadhyay

The process of combining two or more non-conventional machining processes to obtain the required machining performance is known as hybridisation. Hybrid electro discharge machining came into the picture of macro machining due to the requirement of more rapid machining process with improved efficiency of non-conventional machining process. The technique of vibration assisted EDM process did not prove to be successful due to some disadvantages like increase in tool wear for low melting and comparatively softer tool material. Therefore, a need for more advanced hybridised process has been realized to improve the overall machining efficiency specially circularity and radial overcut. A permanent magnetic field force assisted EDM process was carried out on SS 316 plate with tungsten carbide tool of 5 mm diameter. MRR, TWR, and diametral overcut have been optimized by firefly algorithm technique which showed satisfactory results. It has been found that tool wear and diametral overcut has been found to be reduced with magnetic field-assisted EDM than conventional EDM processes.

2018 ◽  
Vol 25 (01) ◽  
pp. 1830003 ◽  
Author(s):  
SUJOY CHAKRABORTY ◽  
SIDDHARTHA KAR ◽  
VIDYUT DEY ◽  
SUBRATA KUMAR GHOSH

Electro-discharge machining (EDM) process is one of the most successful non-conventional machining processes for the last three to four decades in machining very hard materials which are tough to machine by conventional machining process. In the EDM process, besides the erosion of workpiece material, the inherent nature of the process leads to some tool material removal also. This nature of EDM process has been exploited by the researchers which led to the invention of Electro-discharge coating (EDC). EDC is a surface modification technique where tool material gets deposited on the substrate surface due to the sparking effect. It works on reverse polarity to that of EDM. A literature review based on the phenomenon of surface improvement by EDC process and also the future drifts of its application are shown in this paper.


2014 ◽  
Vol 592-594 ◽  
pp. 479-483 ◽  
Author(s):  
Hemant Walkar ◽  
Vijaykumar S. Jatti ◽  
T.P. Singh

Electric discharge machining (EDM) is a non-conventional machining process in which material removal take place by a series of electric spark generated between the small gap of both electrode and both immersed in dielectric medium. The gap conditions of EDM significntly affect the stability of machining process. Thus, the machining performance would be improved by removing the debris from the machining gap fastly. In view of this, the objective of present work was to investigate the effect of magnetic field on the material removal rate (MRR) and surface roughness (SR), in conjunction with the variation of electrical parameters like pulse on-off times and gap current, while keeping other electrical parameters and work piece/ tool material constant. Experimental results showed that the magnetic field assisted EDM improves the process stability. Moreover, the EDM process with high efficiency and quality of machined parts could fulfill the requirements of modern manufacturing industries.


Materials ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 164
Author(s):  
Panagiotis Karmiris-Obratański ◽  
Emmanouil L. Papazoglou ◽  
Beata Leszczyńska-Madej ◽  
Krzysztof Zagórski ◽  
Angelos P. Markopoulos

Electrical Discharge Machining (EDM) is a non-traditional cutting technology that is extensively utilized in contemporary industry, particularly for machining difficult-to-cut materials. EDM may be used to create complicated forms and geometries with great dimensional precision. Titanium alloys are widely used in high-end applications owing to their unique intrinsic characteristics. Nonetheless, they have low machinability. The current paper includes an experimental examination of EDM’s Ti-6Al-4V ELI (Extra Low Interstitials through controlled interstitial element levels) process utilizing a graphite electrode. The pulse-on current (IP) and pulse-on time (Ton) were used as control parameters, and machining performance was measured in terms of Material Removal Rate (MRR), Tool Material Removal Rate (TMRR), and Tool Wear Ratio (TWR). The Surface Roughness (SR) was estimated based on the mean roughness (SRa) and maximum peak to valley height (SRz), while, the EDMed surfaces were also examined using optical and SEM microscopy and cross-sections to determine the Average White Layer Thickness (AWLT). Finally, for the indices above, Analysis of Variance (ANOVA) was conducted, whilst semi-empirical correlations for the MRR and TMRR were given using the Response Surface Method (RSM). The results show that the pulse-on time is the most significant parameter of the machining process that may increase the MRR up to 354%. Pulse-on current and pulse-on time are shown to have an impact on the surface integrity of the finished product. Furthermore, statistics, SEM, and EDX images on material removal efficiency and tool wear rate are offered to support the core causes of surface and sub-surface damage. The average microhardness of the White Layer (WL) is 1786 HV.


Author(s):  
Anshuman Kumar Sahu ◽  
Siba Sankar Mahapatra ◽  
Suman Chatterjee

Electrical discharge machining (EDM), a thermo-mechanical machining process, is used in producing a complicated intrinsic cavity in difficult-to-machine materials with excellent surface finish. One of the major disadvantages of EDM process is the tool wear. However, tool wear can be used advantageously for coating purpose. Coating is a unique method of EDM process by the use of electrode prepared through powder metallurgy (PM) route. This process is also cheaper as compared to other deposition processes like chemical vapor deposition (CVD) and physical vapor deposition (PVD) processes. Therefore, electrical discharge coating (EDC) can be employed in industries for coating purpose where the corrosion resistance and hardness of the work piece material are required to be increased for their use in a wide range of environmental condition. Copper (Cu) and tungsten (W) powders in weight percentage of 30 and 70 respectively are used for the preparation of the tool electrode. The PM process parameters like compaction pressure (CP) and sintering temperature (ST) are varied to prepare the tool electrodes. The density and electrical conductivity of the electrodes are found to increase with an increase in compaction pressure and sintering temperature. The substrate on which coating is made is chosen as AISI 1040 stainless steel with EDM oil as the dielectric fluid. During coating, the influence of parameters like discharge current (Ip), duty cycle (τ) and pulse-on-time (Ton) on material deposition ratio (MDR), Average surface roughness (Ra), coated layer thickness (LT) and micro-hardness of the coated layer are studied. To reduce the number of the experiment, Taguchi’s L18 orthogonal array has been used. To find out the best parametric combination that can simultaneously optimize all performance measures, multi-objective optimization on the basis of ratio analysis (MOORA) method combined with Firefly algorithm has been employed.


2019 ◽  
Vol 6 ◽  
pp. 2 ◽  
Author(s):  
Binayaka Nahak ◽  
Ankur Gupta

Electro discharge machining (EDM) is a popular unconventional machining process widely employed in die-making industries. Careful selection of process parameters such as pulse current, voltage, on and off time, etc. is essential for machining of hard and conductive materials using EDM. Previous researchers working in the area of EDM have extensively analyzed the machining performance through experimental study, modeling, and simulation and also by theoretical analysis. This article discusses the significant summary of the work performed by earlier researchers through a detailed literature survey. Relevant literature on EDM and impact of process parameters on performance measures such as surface quality, tool wear rate and material removal rate are reviewed. The challenge and limitation of EDM process are also highlighted in this article. It is observed that optimization of process parameters is essentially required for effective and economical machining. So, this article addresses the various issues related to EDM and also provides brief insight into some of the current generation applications of EDM process explored in various industries.


Author(s):  
J-B Li ◽  
K Jiang ◽  
G J Davies

A novel die-sinking micro-electro discharge machining (EDM) process is presented for volume fabrication of metallic microcomponents. In the process, a high-precision silicon electrode is fabricated using deep reactive ion etching (DRIE) process of microelectromechanical systems (MEMS) technology and then coated with a thin layer of copper to increase the conductivity. The metalized Si electrode is used in the EDM process to manufacture metallic microcomponents by imprinting the electrode onto a flat metallic surface. The two main advantages of this process are that it enables the fabrication of metallic microdevices and reduces manufacturing cost and time. The development of the new EDM process is described. A silicon component was produced using the Surface Technology Systems plasma etcher and the DRIE process. Such components can be manufactured with a precision in nanometres. The minimum feature of the component is 50 μm. In the experiments, the Si component was coated with copper and then used as the electrode on an EDM machine of 1 μm resolution. In the manufacturing process, 130 V and 0.2 A currents were used for a period of 5 min. The SEM images of the resulting device show clear etched areas, and the electric discharge wave chart indicates a good fabrication condition. The experimental results have been analysed and the new micro-EDM process is found to be able to fabricate 25 μm features.


Author(s):  
Yusuf Kaynak ◽  
Armin Gharibi

Titanium alloy Ti-5Al-5V-3Cr-0.5Fe (Ti-5553) is a new generation of near-beta titanium alloy that is commonly used in the aerospace industry. Machining is one of the manufacturing methods to produce parts that are made of this near-beta alloy. This study presents the machining performance of new generation near-beta alloys, namely, Ti-5553, by focusing on a high-speed cutting process under cryogenic cooling conditions and dry machining. The machining experiments were conducted under a wide range of cutting speeds, including high speeds that used liquid nitrogen (LN2) and carbon dioxide (CO2) as cryogenic coolants. The experimental data on the cutting temperature, tool wear, force components, chip breakability, dimensional accuracy, and surface integrity characteristics are presented and were analyzed to evaluate the machining process of this alloy and resulting surface characteristics. This study shows that cryogenic machining improved the machining performance of the Ti-5553 alloy by substantially reducing the tool wear, cutting temperature, and dimensional deviation of the machined parts. The cryogenic machining also produced shorter chips as compared to dry machining.


Author(s):  
D. K. KARUPANNASAMY ◽  
M. SAMBATHKUMAR ◽  
R. GUKENDRAN ◽  
K. S. K. SASIKUMAR ◽  
N. BAASKARAN ◽  
...  

Bio-degradable lubricants are the need for industries to promote eco-friendly manufacturing process and protect the workers from health hazards. In this paper, the use of oil–water emulsions from the bio-substitute oils have been formulated and its process parameter on a machining process are optimized using response surface methodology. The emulsions are prepared from the vegetable oils such as castor, mahua, palm and neem oil with polysorbate as emulsifying agent. The friction and wear characteristics are studied with a standard pin on disc tribometer for all the emulsions prepared with the base oils namely castor, mahua and palm oil. From the tribological characterization tests, the castor oil emulsions have shown better performance and stability in comparison to other oils. Hence, castor oil emulsions have been tested for its machining performance studies against a conventional mineral oil emulsion in a turning process. Further, an emulsion based on castor oil and neem oil have been tested for tool wear to utilize the antimicrobial properties of neem oil for reducing the bio fouling effects. The machining performance is indicated based on the surface finish and tool wear. Response surface methodology have been used for optimization of the machining parameters, such as cutting velocity, feed rate and depth of cut to achieve an optimal surface finish for a maximum material removal rate. The results show that the castor oil based emulsion can be used as an excellent alternative for mineral oil emulsions.


2013 ◽  
pp. 213-270

Abstract This chapter covers the practical aspects of machining, particularly for turning, milling, drilling, and grinding operations. It begins with a discussion on machinability and its impact on quality and cost. It then describes the dimensional and surface finish tolerances that can be achieved through conventional machining methods, the mechanics of chip formation, the factors that affect tool wear, the selection and use of cutting fluids, and the determination of machining parameters based on force and power requirements. It also includes information on nontraditional machining processes such as electrical discharge, abrasive jet, and hydrodynamic machining, laser and electron beam machining, ultrasonic impact grinding, and electrical discharge wire cutting.


2019 ◽  
Vol 303 ◽  
pp. 06002
Author(s):  
A. Bilal ◽  
A. Rashid ◽  
C. Liu ◽  
M. P. Jahan ◽  
D. Talamona ◽  
...  

Advanced ceramic materials possess superior mechanical characteristics in terms of hardness, wear resistance, fracture toughness and flexural strength. However, these materials experience machining limitations due to their hardness. Machining process of such materials requires high cutting forces and results in high tool wear. Electro- discharge machining (EDM) can be considered as an alternative machining process for advanced ceramics, since this technique is a non-contact machining process, it does not involve high cutting forces but experiences moderate tool wear. However, EDM requires materials to have certain level of electrical conductivity, therefore, non-conductive and semi-conductive ceramic materials experience challenges during machining process. Assisting Electrode Method was suggested as a solution for machining of non-conductive ceramics by EDM. In this method, conductive layer is applied on top of non-conductive ceramics and thus workpiece can be machined by EDM process using residual conductive layer. In this study, coating consisting of three layers, where silver nanoparticles were sandwiched between two layers of silver and copper on top, was used as assisting electrode to machine Aluminium Nitride (AlN) ceramics by silver nanoparticles mixed micro-EDM. Successful machining of AlN was demonstrated and blind micro hole with higher than three aspect ratio was achieved.


Sign in / Sign up

Export Citation Format

Share Document