Optimization of Electrical Discharge Coating Process Using MOORA Based Firefly Algorithm

Author(s):  
Anshuman Kumar Sahu ◽  
Siba Sankar Mahapatra ◽  
Suman Chatterjee

Electrical discharge machining (EDM), a thermo-mechanical machining process, is used in producing a complicated intrinsic cavity in difficult-to-machine materials with excellent surface finish. One of the major disadvantages of EDM process is the tool wear. However, tool wear can be used advantageously for coating purpose. Coating is a unique method of EDM process by the use of electrode prepared through powder metallurgy (PM) route. This process is also cheaper as compared to other deposition processes like chemical vapor deposition (CVD) and physical vapor deposition (PVD) processes. Therefore, electrical discharge coating (EDC) can be employed in industries for coating purpose where the corrosion resistance and hardness of the work piece material are required to be increased for their use in a wide range of environmental condition. Copper (Cu) and tungsten (W) powders in weight percentage of 30 and 70 respectively are used for the preparation of the tool electrode. The PM process parameters like compaction pressure (CP) and sintering temperature (ST) are varied to prepare the tool electrodes. The density and electrical conductivity of the electrodes are found to increase with an increase in compaction pressure and sintering temperature. The substrate on which coating is made is chosen as AISI 1040 stainless steel with EDM oil as the dielectric fluid. During coating, the influence of parameters like discharge current (Ip), duty cycle (τ) and pulse-on-time (Ton) on material deposition ratio (MDR), Average surface roughness (Ra), coated layer thickness (LT) and micro-hardness of the coated layer are studied. To reduce the number of the experiment, Taguchi’s L18 orthogonal array has been used. To find out the best parametric combination that can simultaneously optimize all performance measures, multi-objective optimization on the basis of ratio analysis (MOORA) method combined with Firefly algorithm has been employed.

Machines ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 36 ◽  
Author(s):  
Thi-Hong Tran ◽  
Manh-Cuong Nguyen ◽  
Anh-Tung Luu ◽  
The-Vinh Do ◽  
Thu-Quy Le ◽  
...  

As a successful solution applied to electrical discharge machining (EDM), powder-mixed electrical discharge machining (PMEDM) has been proposed as an upgrade of the EDM process. The optimization of the process parameters of PMEDM is essential and pressing. In this study, Taguchi methods and analysis of variance (ANOVA) were used to find the main parameters affecting surface roughness in the EDM process with SiC powder-mixed-dielectric of hardened 90CrSi steel. The PMEDM parameters selected were the powder concentration, the pulse-on-time, the pulse-off-time, the pulse current, and the server voltage. It was found that SiC powder exhibits positive effects on reducing surface roughness. The roughness obtained with the optimum powder concentration of 4 g/L was reduced by 30.02% compared to that when processed by conventional EDM. Furthermore, the pulse-off-time was found to be the most influential factor that gave an important effect on surface roughness followed by the powder concentration. The EDM condition including a powder concentration of 4 g/L, a pulse-on-time of 6 µs, a pulse-off-time of 21 µs, a pulse current of 8 A, and a server voltage of 4 V resulted in the best surface roughness.


Author(s):  
Premangshu Mukhopadhyay

The process of combining two or more non-conventional machining processes to obtain the required machining performance is known as hybridisation. Hybrid electro discharge machining came into the picture of macro machining due to the requirement of more rapid machining process with improved efficiency of non-conventional machining process. The technique of vibration assisted EDM process did not prove to be successful due to some disadvantages like increase in tool wear for low melting and comparatively softer tool material. Therefore, a need for more advanced hybridised process has been realized to improve the overall machining efficiency specially circularity and radial overcut. A permanent magnetic field force assisted EDM process was carried out on SS 316 plate with tungsten carbide tool of 5 mm diameter. MRR, TWR, and diametral overcut have been optimized by firefly algorithm technique which showed satisfactory results. It has been found that tool wear and diametral overcut has been found to be reduced with magnetic field-assisted EDM than conventional EDM processes.


2016 ◽  
Vol 19 (2) ◽  
pp. 88-97
Author(s):  
Long Tien Banh ◽  
Phan Huu Nguyen ◽  
Cuong Ngo

Powder mixed electrical discharge maching (PMEDM) is a complex machining process which is controlled by a number of machining parameters. Each machining parameter has its own influence on performance of the process. For achieving the best performance of the electrical discharge machining (EDM) process, it is crucial to carry out parametric design responses such as Metal Removal Rate (MRR), Tool Wear Rate (TWR) and Surface Roughness(SR). The objective of this paper is to optimization of input parameters for the TWR in PMEDM using powder titanium are presented. The Taguchi method was applied to the processing parameters to investigate the following: workpiece material, tool material, polarity, pulse-on time, current, pulse-off time, and powder concentration. The analysis used the Taguchi method and given the optimal value for TWR with respective parameters. Electrode material affected the strongest factor, the Taguchi coefficient, S/N of TWR. And the optimal value of TWR was 3.092 mm3/min. Results from optimization calculations and experimentation have demonstrated high accuracy and efficiency.


Author(s):  
Uday A. Dabade

Most of the components used in automobile and aerospace industries are replaced by advanced materials such as Metal Matrix Components (MMCs) and Inconel. So in this area, drilling is most popular method used for joining, bolting and riveting purpose. Inconel-718 is a high strength, temperature resistant (HSTR) nickel -based super alloy. It is extensively used in aerospace applications, such as gas turbines, rocket motors, and spacecraft as well as in nuclear reactors, pumps and tooling. Inconel-718 is difficult to machine, because of its poor thermal properties, high toughness, high hardness, and high work hardening rate. Therefore, many researchers have tried for an alternative source by many conventional and nonconventional machining processes. Electro discharge machining (EDM) is widely used non conventional machining process for such materials. Hence, in this paper some efforts are taken to investigate the effect of different EDM process parameters such as current, dielectric flow rate and pulse on time on the tool wear rate (TWR) and grading of deburred holes by visual inspection for burr removal in drilled holes of Inconel-718 material. In this study burr removal operation of drilled holes via EDM process is carried out. Two types of electrode materials such as Aluminum and Brass with cylindrical taper geometry at tip is used. The experiments are performed using Taguchi method of design of experiment and L27 orthogonal array. The results indicate that only current is most significant parameter affecting for tool wear rate (TWR) as well as grading of drilled holes by visual inspection. Secondarily, SEM photographs of deburred holes indicate that effective burr removal operation using Brass electrode compared to Aluminium provides better solution for Inconel-718 material.


2018 ◽  
Vol 7 (2.8) ◽  
pp. 10
Author(s):  
A VS Ram Prasad ◽  
Koona Ramji ◽  
B Raghu Kumar

Machining of Titanium alloys is difficult due to their chemical and physical properties namely excellent strength, chemical reactivity and low thermal conductivity. Traditional machining of such materials leads to formation of continuous chips and tool bits are subjected to chatter which leads to formation of poor surface on machined surface. In this study, Wire-EDM one of the most popular unconventional machining process which was used to machine such difficult-to-cut materials. Effect of Wire-EDM process parameters namely peak current, pulse-on- time, pulse-off-time, servo voltage on MRRand SR was investigated by Taguchi method. 0.25 mm brass wire was used in this process as electrode material. A surface roughness tester (Surftest 301) was used to measure surface roughness value of the machined work surface. A multi-response optimization technique was then utilized to optimize Wire-EDM process parameters for achieving maximum MRR and minimum SR simultaneously.


Author(s):  
Anshuman Kumar Sahu ◽  
Siba Sankar Mahapatra

Electrical discharge machining (EDM), a thermo-mechanical machining process, is used in producing complicated intrinsic cavity in difficult-to- machine materials with excellent surface finish. One of the major disadvantage of EDM process is the tool wear, which can be used advantageously for coating purpose. Coating is a unique method of EDM process by the use of electrode prepared via powder metallurgy route. Copper and tungsten powders in weight percentage of 30 and 70 respectively are used for the preparation of the tool electrode by varying the PM process parameters like compaction pressure and sintering temperature. The substrate on which coating is made is chosen as AISI 1040 stainless steel with EDM oil as the dielectric fluid. During coating, influence of parameters like discharge current, duty cycle and pulse-on-time on material deposition rate, tool wear rate and radial under deposition are studied. To find out the best parametric combination Grey Relational Analysis method combined with Harmony Search algorithm has been employed.


Author(s):  
Arun Kumar Rouniyar ◽  
Pragya Shandilya

Magnetic field assisted powder mixed electrical discharge machining is a hybrid machining process with suitable modification in electrical discharge machining combining the use of magnetic field and fine powder in the dielectric fluid. Aluminum 6061 alloy has found highly significance for the advanced industries like automotive, aerospace, electrical, marine, food processing and chemical due to good corrosion resistance, high strength-to-weight ratio, ease of weldability. In this present work, magnetic field assisted powder mixed electrical discharge machining setup was fabricated and experiments were performed using one factor at a time approach for aluminum 6061 alloy. The individual effect of machining parameters namely, peak current, pulse on time, pulse off time, powder concentration and magnetic field on material removal rate and tool wear rate was investigated. The effect of peak current was found to be dominant on material removal rate and tool wear rate followed by pulse on time, powder concentration and magnetic field. Increase in material removal rate and tool wear rate was observed with increase in peak current, pulse on time and a decrease in pulse off time, whereas, for material removal rate increases and tool wear rate decreases up to the certain value and follow the reverse trend with an increase in powder concentration. Material removal rate was increased and tool wear rate was decreased with increase in magnetic field.


2018 ◽  
Vol 7 (4.5) ◽  
pp. 542
Author(s):  
Harshalkumar R. Mundane ◽  
Dr. A. V. Kale ◽  
Dr. J. P. Giri

EDM (Spark erosion) is non-conventional machining process which uses as removing unwanted material by electrical spark erosion. EDM Machining parameters affecting to the performance and the industries goal is to produce high quality of product with less time consuming and cost. To achieve these goals, optimizing the machining parameters such as pulse on time, pulse off time, cutting speed, depth of cut, duty cycle, arc gap, voltage etc. The performance measure of EDM is calculated on the basis of Material Remove Rate(MRR), Tool Wear Rate(TWR), and Surface Roughness(SR).The main objective of present work is to investigate of the influence of input EDM (Electro Discharge Machining) parameters on machining characteristics like surface roughness and the effects of various EDM process parameters such as pulse on time, pulse off time, servo voltage, peak current, dielectric flow rate, on different process response parameters such as material removal rate (MRR), surface roughness (Ra), Kerf (width of Cut), tool wear ratio(TWR)and surface integrity factors. In this paper few selected research paper related to Die-sinker EDM with effect of MRR, TWR, surface roughness (SR) and work piece material have been discussed.   


2016 ◽  
Vol 4 (1) ◽  
Author(s):  
Nirdesh Ojha ◽  
Florian Zeller ◽  
Claas Mueller ◽  
Holger Reinecke

Electrical discharge machining (EDM) is widely used to manufacture complex shaped dies, molds and critical parts in conductive materials. With the help of an assisting electrode (AE), EDM process can be used to machine nonconductive ceramics. This paper evaluates the mechanical properties of three high-performance nonconductive ceramics (ZrO2, Si3N4, and SiC) that have been machined with the EDM process using AE. Mechanical properties such as Vickers hardness (HV 0.3), surface roughness (Sq), and flexural strength of the machined and the nonmachined samples are compared. The EDM process causes decrease in Vickers hardness, increase in surface roughness, and decrease in flexural strength.


Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 590
Author(s):  
Katerina Mouralova ◽  
Libor Benes ◽  
Josef Bednar ◽  
Radim Zahradnicek ◽  
Tomas Prokes ◽  
...  

Wire electrical discharge machining (WEDM) is an unconventional and very efficient technology for precision machining of the Nimonic C 263 super alloy, which is very widespread, especially in the energy, aerospace and automotive industries. Due to electrical discharge, defects in the form of cracks or burned cavities often occur on the machined surfaces, which negatively affect the correct functionality and service life of the manufactured components. To increase the efficiency of the machining of Nimonic C 263 using WEDM, in this study, extensive design of experiments was carried out, monitoring input factors in the form of machine parameters like Pulse off time, Gap voltage, Discharge current, Pulse on time and Wire feed, the output of which was comprehensive information about the behaviour of such machined surfaces, which allowed the optimization of the entire machining process. Thus, the optimization of the Cutting speed was performed in relation to the quality of the machined surface and the machining accuracy, as well as an analysis of the chemical composition of the machined surfaces and a detailed analysis of the lamella using a transmission electron microscope. A detailed study of the occurrence of surface or subsurface defects was also included. It was found that with the help of complex optimization tools, it is possible to significantly increase the efficiency of the machining of the Nimonic C 263 super alloy and achieve both financial savings in the form of shortened machine time and increasing the quality of machined surfaces.


Sign in / Sign up

Export Citation Format

Share Document