NB-IoT for Localization and Target Detection

Author(s):  
Anjali Anjali

Narrowband internet of things (NB-IoT) is a low power wide area network technology with numerous benefits over conventional technologies. The main advantages of NB-IoT are low-power, low-cost, long battery life, wider deployment, and many more. Along with these advantages, knowledge of the location of the devices for both the indoor and outdoor environments will have an added benefit for NB-IoT applications. The current global navigation satellite systems (GNSS) chipsets will drain the limited available battery and will not be useful for localization in NB-IoT applications while the global positioning system (GPS) applications accuracy is not enough to support NB-IoT applications. For NB-IoT implementation, having low per-unit cost of the devices is an important aspect along with other features mentioned earlier, and hence there is a need to have limited hardware components like processor, battery, and memory. Therefore, the main challenge for enabling a positioning system lies in the proper radio management and balancing of power consumption against the performance of the system. In this chapter, different localization methods, techniques, and metrics are discussed. The choice of each one of these depends on the application requirement. The standardization of NB-IoT is in the process and its current status as per the 3rd Generation Partnership Project (3GPP) specifications are also highlighted.

2021 ◽  
Vol 84 (1) ◽  
pp. 97-105
Author(s):  
S. Kavetha ◽  
A. S. Ja'afar ◽  
M. Z. A. Aziz ◽  
A. A. M. Isa ◽  
M. S. Johal ◽  
...  

LoRa is identified as Long-Range low power network technology for Low Power Wide Area Network (LPWAN) usage. Nowadays, Global Positioning System (GPS) is an important system which is used for location and navigation predominantly used in outdoor but less accurate in indoor environment. Most of LoRa technology have been used on the internet-of-things (ioT) but very few use it as localization system. In this project, a GPS-less solution is proposed where LoRa Positioning System was developed which consists of LoRa transmitter, LoRa transceiver and LoRa receiver. The system has been developed by collecting the RSSI which is then used for the distance estimation. Next, Kalman filter with certain model has been implemented to overcome the effect of multipath fading especially for indoor environment and the trilateration technique is applied to estimate the location of the user. Both distribution estimation results for Line-Of-Sight (LOS) and Non-Line-Of-Sight (NLOS) condition were analyzed. Then, the comparison RMSE achievement is analyzed between the trilateration and with the Kalman Filter. GPS position also were collected as comparison to the LoRa based positioning. Lastly, the Cumulative Density Function (CDF) shows 90% of the localization algorithm error for LOS is lower than 0.82 meters while for NLOS is 1.17 meters.


2021 ◽  
Vol 13 (1) ◽  
pp. 338
Author(s):  
Nahla Nurelmadina ◽  
Mohammad Kamrul Hasan ◽  
Imran Memon ◽  
Rashid A. Saeed ◽  
Khairul Akram Zainol Ariffin ◽  
...  

The Industrial Internet of things (IIoT) helps several applications that require power control and low cost to achieve long life. The progress of IIoT communications, mainly based on cognitive radio (CR), has been guided to the robust network connectivity. The low power communication is achieved for IIoT sensors applying the Low Power Wide Area Network (LPWAN) with the Sigfox, NBIoT, and LoRaWAN technologies. This paper aims to review the various technologies and protocols for industrial IoT applications. A depth of assessment has been achieved by comparing various technologies considering the key terms such as frequency, data rate, power, coverage, mobility, costing, and QoS. This paper provides an assessment of 64 articles published on electricity control problems of IIoT between 2007 and 2020. That prepares a qualitative technique of answering the research questions (RQ): RQ1: “How cognitive radio engage with the industrial IoT?”, RQ2: “What are the Proposed architectures that Support Cognitive Radio LPWAN based IIOT?”, and RQ3: What key success factors need to comply for reliable CIIoT support in the industry?”. With the systematic literature assessment approach, the effects displayed on the cognitive radio in LPWAN can significantly revolute the commercial IIoT. Thus, researchers are more focused in this regard. The study suggests that the essential factors of design need to be considered to conquer the critical research gaps of the existing LPWAN cognitive-enabled IIoT. A cognitive low energy architecture is brought to ensure efficient and stable communications in a heterogeneous IIoT. It will protect the network layer from offering the customers an efficient platform to rent AI, and various LPWAN technology were explored and investigated.


2021 ◽  
Author(s):  
Raghav Khandelwal ◽  
Arsh Makhdumi ◽  
Gagandeep Kaur ◽  
Samarth Singh

Network ◽  
2022 ◽  
Vol 2 (1) ◽  
pp. 36-52
Author(s):  
Miguel Rosendo ◽  
Jorge Granjal

The constant evolution in communication infrastructures will enable new Internet of Things (IoT) applications, particularly in areas that, up to today, have been mostly enabled by closed or proprietary technologies. Such applications will be enabled by a myriad of wireless communication technologies designed for all types of IoT devices, among which are the Long-Range Wide-Area Network (LoRaWAN) or other Low-power and Wide-Area Networks (LPWAN) communication technologies. This applies to many critical environments, such as industrial control and healthcare, where wireless communications are yet to be broadly adopted. Two fundamental requirements to effectively support upcoming critical IoT applications are those of energy management and security. We may note that those are, in fact, contradictory goals. On the one hand, many IoT devices depend on the usage of batteries while, on the other hand, adequate security mechanisms need to be in place to protect devices and communications from threats against their stability and security. With thismotivation in mind, we propose a solution to address the management, in tandem, of security and energy in LoRaWAN IoT communication environments. We propose and evaluate an architecture in the context of which adaptation logic is used to manage security and energy dynamically, with the goal of guaranteeing appropriate security, while promoting the lifetime of constrained sensing devices. The proposed solution was implemented and experimentally evaluated and was observed to successfully manage security and energy. Security and energy are managed in line with the requirements of the application at hand, the characteristics of the constrained sensing devices employed and the detection, as well as the threat, of particular types of attacks.


Author(s):  
Mohamed El-Hadedy ◽  
Martin Margala ◽  
Sergiu Mosanu ◽  
Danilo Gligoroski ◽  
Jinjun Xiong ◽  
...  

Author(s):  
Taghi Shahgholi ◽  
Amir Sheikhahmadi ◽  
Keyhan Khamforoosh ◽  
Sadoon Azizi

AbstractIncreased number of the vehicles on the streets around the world has led to several problems including traffic congestion, emissions, and huge fuel consumption in many regions. With advances in wireless and traffic technologies, the Intelligent Transportation System (ITS) has been introduced as a viable solution for solving these problems by implementing more efficient use of the current infrastructures. In this paper, the possibility of using cellular-based Low-Power Wide-Area Network (LPWAN) communications, LTE-M and NB-IoT, for ITS applications has been investigated. LTE-M and NB-IoT are designed to provide long range, low power and low cost communication infrastructures and can be a promising option which has the potential to be employed immediately in real systems. In this paper, we have proposed an architecture to employ the LPWAN as a backhaul infrastructure for ITS and to understand the feasibility of the proposed model, two applications with low and high delay requirements have been examined: road traffic monitoring and emergency vehicle management. Then, the performance of using LTE-M and NB-IoT for providing backhaul communication infrastructure has been evaluated in a realistic simulation environment and compared for these two scenarios in terms of end-to-end latency per user. Simulation of Urban MObility has been used for realistic traffic generation and a Python-based program has been developed for evaluation of the communication system. The simulation results demonstrate the feasibility of using LPWAN for ITS backhaul infrastructure mostly in favor of the LTE-M over NB-IoT.


Designs ◽  
2021 ◽  
Vol 5 (1) ◽  
pp. 17
Author(s):  
Nur-A-Alam ◽  
Mominul Ahsan ◽  
Md. Abdul Based ◽  
Julfikar Haider ◽  
Eduardo M. G. Rodrigues

In the era of Industry 4.0, remote monitoring and controlling appliance/equipment at home, institute, or industry from a long distance with low power consumption remains challenging. At present, some smart phones are being actively used to control appliances at home or institute using Internet of Things (IoT) systems. This paper presents a novel smart automation system using long range (LoRa) technology. The proposed LoRa based system consists of wireless communication system and different types of sensors, operated by a smart phone application and powered by a low-power battery, with an operating range of 3–12 km distance. The system established a connection between an android phone and a microprocessor (ESP32) through Wi-Fi at the sender end. The ESP32 module was connected to a LoRa module. At the receiver end, an ESP32 module and LoRa module without Wi-Fi was employed. Wide Area Network (WAN) communication protocol was used on the LoRa module to provide switching functionality of the targeted area. The performance of the system was evaluated by three real-life case studies through measuring environmental temperature and humidity, detecting fire, and controlling the switching functionality of appliances. Obtaining correct environmental data, fire detection with 90% accuracy, and switching functionality with 92.33% accuracy at a distance up to 12 km demonstrated the high performance of the system. The proposed smart system with modular design proved to be highly effective in controlling and monitoring home appliances from a longer distance with relatively lower power consumption.


Sign in / Sign up

Export Citation Format

Share Document