Principles and Applications of Thermal Spray Coatings

Author(s):  
John Henao ◽  
Carlos A. Poblano-Salas ◽  
Fabio Vargas ◽  
Astrid L. Giraldo-Betancur ◽  
Jorge Corona-Castuera ◽  
...  

The goal of the chapter is to address the fundamental theory of thermal spraying and its modern industrial applications, in particular, those involving flame spray, HVOF, plasma spray, and cold spray processes. During the last 30 years, thousands of manuscripts and various book chapters have been published in the field of thermal spray, displaying the evolution of thermally sprayed coatings in many industrial applications. Thermal spray coatings are currently interesting for different modern applications including prosthesis, thermal barriers, electrochemical catalysis, electrochemical energy conversion devices, biofouling, and self-repairing surfaces. The chapter will explain the fundamental principles of the aforementioned thermal spraying processes and discuss the effect of different controlling parameters on the final properties of the produced coatings. This chapter will also explore current and future industrial applications of thermal spray coatings.

Author(s):  
K. Akita ◽  
G. Zhang ◽  
S. Takahashi ◽  
H. Misawa ◽  
S. Tobe

Abstract Microscopic fracture mechanisms of thermal spray coatings under bending stress are investigated. Samples of thermally sprayed coatings were made using three distances. The sprayed powder was pure molybdenum. Vertical microcracks occur in lamellae and subsequently, these cracks join together and form vertical macrocracks in the samples sprayed with a short spraying distance. On the other hand, horizontal microcracks occur at the lamellae interfaces, and these cracks link together in the samples sprayed with a long spraying distance. These tendencies can be explained in terms of the hardness of the lamella and the bonding strength between each lamella. It is clarified that the bonding strength between each lamella corresponds to the applied strain at the point of rapid increase of the AE event count. The amplitude and rate of AE beyond the point of rapid increase are high in the coatings which formed macrocracks. It is concluded that the coating which has high resistance to crack formation has a high point of AE increase, low AE amplitude and low AE increasing rate.


2008 ◽  
Vol 384 ◽  
pp. 75-98 ◽  
Author(s):  
Bernhard Wielage ◽  
Thomas Lampke ◽  
Thomas Grund

Thermal spraying is one of the most variable and diverse surface coating techniques concerning materials to be processed as well as possible geometries to be coated. The group of thermal spray processes covers a large parameter field to combine nearly each coating with each base material. Thermally sprayed coatings can be applied very evenly and therefore allow to be applied on final-shaped components. Otherwise, if further treatment or finishing is necessary, thermal spray coatings can be processed by grinding or even milling. Masking during the coating process permits the selective coating of specific surface parts or the application of required geometrically structures, e. q. conductor structures. The main application field of thermal spray coatings is the (combined) wear and corrosion protection of selected component parts.


Author(s):  
G. Grigorenko ◽  
A. Borisova

Abstract An integrated approach was developed for investigation of thermal spray coatings with the amorphous-crystalline structure. The new approach combines methods of metallography, differential thermal and X-ray phase analysis, scanning electron microscopy and X-ray microanalysis. This makes it possible to reveal structural, phase and chemical heterogeneity, determine the degree of amorphization of coatings, temperature and heat of crystallization of the amorphous phase during heating. The new integrated approach was used to study amorphous-crystalline coatings of the Ni-P, Fe-Ni-B and Fe-B systems produced by thermal spraying.


2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Vineet Shibe ◽  
Vikas Chawla

Thermal spray coatings can be applied economically on machine parts to enhance their requisite surface properties like wear, corrosion, erosion resistance, and so forth. Detonation gun (D-Gun) thermal spray coatings can be applied on the surface of carbon steels to improve their wear resistance. In the present study, alloy powder cermet coatings WC-12% Co and Cr3C2-25% NiCr have been deposited on ASTM A36 steel with D-Gun thermal spray technique. Sliding wear behavior of uncoated ASTM A36 steel and D-Gun sprayed WC-12% Co and Cr3C2-25% NiCr coatings on base material is observed on a Pin-On-Disc Wear Tester. Sliding wear performance of WC-12% Co coating is found to be better than the Cr3C2-25% NiCr coating. Wear performance of both these cermet coatings is found to be better than uncoated ASTM A36 steel. Thermally sprayed WC-12% Co and Cr3C2-25% NiCr cermet coatings using D-Gun thermal spray technique is found to be very useful in improving the sliding wear resistance of ASTM A36 steel.


Author(s):  
Y. Tan ◽  
A. Sharma ◽  
J. P. Longtin ◽  
S. Sampath ◽  
H. Wang

Thermal spray coatings are used extensively for protection of engineering components and structures in a variety of applications. Due to the nature of thermal spraying process, the coating thermal, mechanical, and electrical properties depend strongly on the coating microstructure, which consists of many individual splats, interfaces between the splats, defects and voids. The coating microstructure, in turn, is determined by the thermal spray process parameters. In order to relate coating process parameters to the final coating performance, then, it is desirable to relate coating microstructure to coating properties. In this work, thermal conductivity is used as the physical parameter of interest. Thermal conductivity of thermal spray coatings is studied by using an image analysis-based approach of typical coating cross sections. Three coating systems, yttria stabilized zirconia (YSZ), molybdenum, and Ni-5wt.%Al are explored in this work. For each material, thermal conductivity is simulated by using a microstructure image-based finite element analysis model. The model is then applied to high temperature conditions (up to 1200 °C) with a hot stage-equipped scanning electron microscope imaging technique to assess thermal conductivity at high temperatures. The coating thermal conductivity of metallic coatings is also experimentally measured by using a high-temperature laser flash technique.


2000 ◽  
Author(s):  
Christian Moreau ◽  
Luc Leblanc

Abstract Thermal spray coatings are used to protect surfaces against exposure to severe conditions. To insure a reliable protection, not only the structure and properties of the sprayed coatings must be optimized but also one needs to develop appropriate process control techniques to produce high performance coatings in a consistent manner, day after day. This is particularly important during plasma spraying as the wear of the electrodes affects significantly the plasma characteristics and consequently the coating properties. First, in this paper, the stability of plasma spray processes is investigated by monitoring in-flight particle characteristics and plasma fluctuations. Secondly, the possibility and advantages of controlling plasma spray processes by monitoring and regulating the condition of the sprayed particles are discussed. Finally, we will see how the properties of thermal barrier coatings and wear resistant coatings can be optimized by controlling the temperature and velocity of the sprayed particles both in the plasma spray and HVOF (high velocity oxy-fuel) processes.


Author(s):  
R.C. Tucker ◽  
A.A. Ashari

Abstract Thermal spray coatings are widely used for erosion resistance, but the relationship between the microstructure of the coatings and their erosion resistance is not well understood. In this paper the performance of several commonly used coatings at ambient and elevated temperatures is reviewed in light of the coatings' structure and compared with a new coating. Two high temperature industrial applications, solid particle erosion in steam turbines and alumina-based erosion have been chosen to illustrate the significance of a coating's structure on its performance.


Sign in / Sign up

Export Citation Format

Share Document