On the Similarity Search With Hamming Space Sketches

Author(s):  
Vladimir Mic ◽  
Pavel Zezula

This chapter focuses on data searching, which is nowadays mostly based on similarity. The similarity search is challenging due to its computational complexity, and also the fact that similarity is subjective and context dependent. The authors assume the metric space model of similarity, defined by the domain of objects and the metric function that measures the dissimilarity of object pairs. The volume of contemporary data is large, and the time efficiency of similarity query executions is essential. This chapter investigates transformations of metric space to Hamming space to decrease the memory and computational complexity of the search. Various challenges of the similarity search with sketches in the Hamming space are addressed, including the definition of sketching transformation and efficient search algorithms that exploit sketches to speed-up searching. The indexing of Hamming space and a heuristic to facilitate the selection of a suitable sketching technique for any given application are also considered.

Symmetry ◽  
2020 ◽  
Vol 12 (1) ◽  
pp. 127 ◽  
Author(s):  
Pradip Debnath ◽  
Manuel de La Sen

The symmetry concept is an intrinsic property of metric spaces as the metric function generalizes the notion of distance between two points. There are several remarkable results in science in connection with symmetry principles that can be proved using fixed point arguments. Therefore, fixed point theory and symmetry principles bear significant correlation between them. In this paper, we introduce the new definition of the eventually Δ -restrictive set-valued map together with the concept of p-orbital continuity. Further, we introduce another new concept called the Δ ( ϵ ) -restrictive set-valued map. We establish several fixed point results related to these maps and proofs of these results also provide us with schemes to find a fixed point. In a couple of results, the stronger condition of compactness of the underlying metric space is assumed. Some results are illustrated with examples.


1980 ◽  
Vol 45 (3) ◽  
pp. 417-438 ◽  
Author(s):  
Victor L. Bennison

Though researchers in the field of abstract computational complexity theory have utilized many of the tools of recursive function theory in the development of their field, the early results obtained (e.g., see [8]) seemed to be rather independent of results in recursion theory (at least to the extent that the results were not uniformly interesting to both varieties of theorists). It seems to have been generally accepted, however, that strong parallels of one form or another must exist between the two fields. Indeed, recent results of Blum and Marques [7], Morris [13], Soare [15] and Bennison [1], [3] have revealed a striking correspondence between complexity theoretic properties and recursion theoretic properties. These results are not contrived, but rather link together interesting properties which had arisen naturally and independently in their respective fields. This paper presents the results of research aimed at finding a recursion theoretic characterization for a complexity theoretic property which had arisen from the study of the speed-up phenomenon.In abstract computational complexity theory we are concerned with categorizing computable functions or sets according to their relative difficulty of computation. The phrase “difficult to compute” may take on different meanings depending on which criteria (complexity theoretic properties) we use to define what it means for a function or set to be hard to compute. In the abstract setting, however, such criteria should yield the same classes of functions or sets regardless of the underlying abstract complexity measure (in the sense of Blum [4], e.g., tape, time, etc.). In other words, such criteria should be measure-independent. In this paper we will be considering one way of defining “difficult to compute”. Namely, we shall say that a function or set is difficult to compute if it does not have a recursively enumerable complexity sequence as defined by Meyer and Fischer [12]. For a property to have a recursion theoretic characterization it must be measure-independent, for a recursion theoretic property is, by its very nature, measure-independent. It will not be immediately obvious whether or not the property of having an r.e. complexity sequence is measure-independent. We attack this question by first considering an alternative definition of an r.e. complexity sequence, one which is easily seen to be measure-independent.


Author(s):  
P. M. Lowrie ◽  
W. S. Tyler

The importance of examining stained 1 to 2μ plastic sections by light microscopy has long been recognized, both for increased definition of many histologic features and for selection of specimen samples to be used in ultrastructural studies. Selection of specimens with specific orien ation relative to anatomical structures becomes of critical importance in ultrastructural investigations of organs such as the lung. The uantity of blocks necessary to locate special areas of interest by random sampling is large, however, and the method is lacking in precision. Several methods have been described for selection of specific areas for electron microscopy using light microscopic evaluation of paraffin, epoxy-infiltrated, or epoxy-embedded large blocks from which thick sections were cut. Selected areas from these thick sections were subsequently removed and re-embedded or attached to blank precasted blocks and resectioned for transmission electron microscopy (TEM).


Author(s):  
Maria Ciaramella ◽  
Nadia Monacelli ◽  
Livia Concetta Eugenia Cocimano

AbstractThis systematic review aimed to contribute to a better and more focused understanding of the link between the concept of resilience and psychosocial interventions in the migrant population. The research questions concerned the type of population involved, definition of resilience, methodological choices and which intervention programmes were targeted at migrants. In the 90 articles included, an heterogeneity in defining resilience or not well specified definition resulted. Different migratory experiences were not adequately considered in the selection of participants. Few resilience interventions on migrants were resulted. A lack of procedure’s descriptions that keep in account specific migrants’ life-experiences and efficacy’s measures were highlighted.


Symmetry ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 32
Author(s):  
Pragati Gautam ◽  
Luis Manuel Sánchez Ruiz ◽  
Swapnil Verma

The purpose of this study is to introduce a new type of extended metric space, i.e., the rectangular quasi-partial b-metric space, which means a relaxation of the symmetry requirement of metric spaces, by including a real number s in the definition of the rectangular metric space defined by Branciari. Here, we obtain a fixed point theorem for interpolative Rus–Reich–Ćirić contraction mappings in the realm of rectangular quasi-partial b-metric spaces. Furthermore, an example is also illustrated to present the applicability of our result.


2020 ◽  
pp. 1-23
Author(s):  
TUYEN TRUNG TRUONG

Abstract A strong submeasure on a compact metric space X is a sub-linear and bounded operator on the space of continuous functions on X. A strong submeasure is positive if it is non-decreasing. By the Hahn–Banach theorem, a positive strong submeasure is the supremum of a non-empty collection of measures whose masses are uniformly bounded from above. There are many natural examples of continuous maps of the form $f:U\rightarrow X$ , where X is a compact metric space and $U\subset X$ is an open-dense subset, where f cannot extend to a reasonable function on X. We can mention cases such as transcendental maps of $\mathbb {C}$ , meromorphic maps on compact complex varieties, or continuous self-maps $f:U\rightarrow U$ of a dense open subset $U\subset X$ where X is a compact metric space. For the aforementioned mentioned the use of measures is not sufficient to establish the basic properties of ergodic theory, such as the existence of invariant measures or a reasonable definition of measure-theoretic entropy and topological entropy. In this paper we show that strong submeasures can be used to completely resolve the issue and establish these basic properties. In another paper we apply strong submeasures to the intersection of positive closed $(1,1)$ currents on compact Kähler manifolds.


Children ◽  
2021 ◽  
Vol 8 (6) ◽  
pp. 525
Author(s):  
Emily von Scheven ◽  
Bhupinder K. Nahal ◽  
Rosa Kelekian ◽  
Christina Frenzel ◽  
Victoria Vanderpoel ◽  
...  

Promoting hope was identified in our prior work as the top priority research question among patients and caregivers with diverse childhood-onset chronic conditions. Here, we aimed to construct a conceptual model to guide future research studies of interventions to improve hope. We conducted eight monthly virtual focus groups and one virtual workshop with patients, caregivers, and researchers to explore key constructs to inform the model. Discussions were facilitated by Patient Co-Investigators. Participants developed a definition of hope and identified promotors and inhibitors that influence the experience of hope. We utilized qualitative methods to analyze findings and organize the promotors and inhibitors of hope within three strata of the socio-ecologic framework: structural, interpersonal, and intrapersonal. Participants identified three types of interventions to promote hope: resources, navigation, and activities to promote social connection. The hope conceptual model can be used to inform the selection of interventions to assess in future research studies aimed at improving hope and the specification of outcome measures to include in hope research studies. Inclusion of the health care system in the model provides direction for identifying strategies for improving the system and places responsibility on the system to do better to promote hope among young patients with chronic illness and their caregivers.


2020 ◽  
Vol 19 (10) ◽  
pp. 1602-1618 ◽  
Author(s):  
Thibault Robin ◽  
Julien Mariethoz ◽  
Frédérique Lisacek

A key point in achieving accurate intact glycopeptide identification is the definition of the glycan composition file that is used to match experimental with theoretical masses by a glycoproteomics search engine. At present, these files are mainly built from searching the literature and/or querying data sources focused on posttranslational modifications. Most glycoproteomics search engines include a default composition file that is readily used when processing MS data. We introduce here a glycan composition visualizing and comparative tool associated with the GlyConnect database and called GlyConnect Compozitor. It offers a web interface through which the database can be queried to bring out contextual information relative to a set of glycan compositions. The tool takes advantage of compositions being related to one another through shared monosaccharide counts and outputs interactive graphs summarizing information searched in the database. These results provide a guide for selecting or deselecting compositions in a file in order to reflect the context of a study as closely as possible. They also confirm the consistency of a set of compositions based on the content of the GlyConnect database. As part of the tool collection of the Glycomics@ExPASy initiative, Compozitor is hosted at https://glyconnect.expasy.org/compozitor/ where it can be run as a web application. It is also directly accessible from the GlyConnect database.


2003 ◽  
Vol 11 (2) ◽  
pp. 169-206 ◽  
Author(s):  
Riccardo Poli ◽  
Nicholas Freitag McPhee

This paper is the second part of a two-part paper which introduces a general schema theory for genetic programming (GP) with subtree-swapping crossover (Part I (Poli and McPhee, 2003)). Like other recent GP schema theory results, the theory gives an exact formulation (rather than a lower bound) for the expected number of instances of a schema at the next generation. The theory is based on a Cartesian node reference system, introduced in Part I, and on the notion of a variable-arity hyperschema, introduced here, which generalises previous definitions of a schema. The theory includes two main theorems describing the propagation of GP schemata: a microscopic and a macroscopic schema theorem. The microscopic version is applicable to crossover operators which replace a subtree in one parent with a subtree from the other parent to produce the offspring. Therefore, this theorem is applicable to Koza's GP crossover with and without uniform selection of the crossover points, as well as one-point crossover, size-fair crossover, strongly-typed GP crossover, context-preserving crossover and many others. The macroscopic version is applicable to crossover operators in which the probability of selecting any two crossover points in the parents depends only on the parents' size and shape. In the paper we provide examples, we show how the theory can be specialised to specific crossover operators and we illustrate how it can be used to derive other general results. These include an exact definition of effective fitness and a size-evolution equation for GP with subtree-swapping crossover.


Mathematics ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 884 ◽  
Author(s):  
Tahair Rasham ◽  
Giuseppe Marino ◽  
Abdullah Shoaib

Recently, George et al. (in Georgea, R.; Radenovicb, S.; Reshmac, K.P.; Shuklad, S. Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 2015, 8, 1005–1013) furnished the notion of rectangular b-metric pace (RBMS) by taking the place of the binary sum of triangular inequality in the definition of a b-metric space ternary sum and proved some results for Banach and Kannan contractions in such space. In this paper, we achieved fixed-point results for a pair of F-dominated mappings fulfilling a generalized rational F-dominated contractive condition in the better framework of complete rectangular b-metric spaces complete rectangular b-metric spaces. Some new fixed-point results with graphic contractions for a pair of graph-dominated mappings on rectangular b-metric space have been obtained. Some examples are given to illustrate our conclusions. New results in ordered spaces, partial b-metric space, dislocated metric space, dislocated b-metric space, partial metric space, b-metric space, rectangular metric spaces, and metric space can be obtained as corollaries of our results.


Sign in / Sign up

Export Citation Format

Share Document