Cooperative Relaying Communication in IoT Applications for 5G Radio Networks

Author(s):  
Rajeev Kumar ◽  
Ashraf Hossain

This chapter presents cooperative relaying networks that are helpful in Internet of Thing (IoT) applications for fifth-generation (5G) radio networks. It provides reliable connectivity as the wireless device is out of range from cellular network, high throughput gains and enhance the lifetime of wireless networks. These features can be achieved by designing the advanced protocols. The design of advanced protocols plays an important role to combat the effect of channel fading, data packet scheduling at the buffered relay, average delay, and traffic intensity. To achieve our goals, we consider two-way cooperative buffered relay networks and then investigate advanced protocols such as without channel state information (CSI) i.e., buffer state information (BSI) only and with partial transmit CSI i.e., BSI/CSI with the assistance of one dimensional Markov chain and transmission policies in fading environment. The outage probability of consecutive links and outage probability of multi-access and broadcast channels are provided in closed-form. Further, the buffered relay achieves maximum throughput gains in closed-form for all these protocols. The objective function of throughput of the buffered relay is evaluated in fractional programming that is transformed into linear program using standard CVX tool. Numerical results show that our proposed protocols performance better as compared to conventional method studied in the literature. Finally, this chapter provides possible future research directions.

Electronics ◽  
2019 ◽  
Vol 8 (8) ◽  
pp. 895
Author(s):  
Shakeel Alvi ◽  
Riaz Hussain ◽  
Qadeer Hasan ◽  
Shahzad Malik

Cognitive radio networks have emerged to exploit optimally the scarcely-available radio spectrum resources to enable evolving 5G wireless communication systems. These networks tend to cater to the ever-increasing demands of higher data rates, lower latencies and ubiquitous coverage. By using the buffer-aided cooperative relaying, a cognitive radio network can enhance both the spectral efficiency and the range of the network; although, this could incur additional end-to-end delays. To mitigate this possible limitation of the buffer-aided relaying in the underlay cognitive network, a virtual duplex multi-hop scheme, referred as buffer-aided multi-hop relaying, is proposed, which improves throughput and reduces end-to-end delays while keeping the outage probability to a minimum as well. This scheme simultaneously takes into account the inter-relay interference and the interference to the primary network. The proposed scheme is modeled as a Markov chain, and Monte Carlo simulations under various scenarios are conducted to evaluate several key performance metrics such as throughput, outage probability, and average packet delay. The results show that the proposed scheme outperforms many non-buffer-aided relaying schemes in terms of outage performance. When compared with other buffer-aided relaying schemes such as max-max, max-link, and buffer-aided relay selection with reduced packet delay, the proposed scheme demonstrated better interference mitigation without compromising the delay performance as well.


Author(s):  
Suhaib Al Shayeb ◽  
Nemanja Dobrota ◽  
Aleksandar Stevanovic ◽  
Nikola Mitrovic

Traffic simulation and optimization tools are classified, according to their practical applicability, into two main categories: theoretical and practical. The performance of the optimized signal timing derived by any tool is influenced by how calculations are executed in the particular tool. Highway Capacity Software (HCS) and Vistro implement the procedures defined in the Highway Capacity Manual, thus they are essentially utilized by traffic operations and design engineers. Considering its capability of timing diagram drafting and travel time collection studies, Tru-Traffic is more commonly used by practitioners. All these programs have different built-in objective function(s) to develop optimized signal plans for intersections. In this study, the performance of the optimal signal timing plans developed by HCS, Tru-Traffic, and Vistro are evaluated and compared by using the microsimulation software Vissim. A real-world urban arterial with 20 intersections and heavy traffic in Fort Lauderdale, Florida served as the testbed. To eliminate any bias in the comparisons, all experiments were performed under identical geometric and traffic conditions, coded in each tool. The evaluation of the optimized plans was conducted based on average delay, number of stops, performance index, travel time, and percentage of arrivals on green. Results indicated that although timings developed in HCS reduced delay, they drastically increased number of stops. Tru-Traffic signal timings, when only offsets are optimized, performed better than timings developed by all of the other tools. Finally, Vistro increased arrivals on green, but it also increased delay. Optimized signal plans were transferred manually from optimization tools to Vissim. Therefore, future research should find methods for automatically transferring optimized plans to Vissim.


2021 ◽  
Author(s):  
Anand Jee ◽  
KAMAL AGRAWAL ◽  
Shankar Prakriya

This paper investigates the performance of a framework for low-outage downlink non-orthogonal multiple access (NOMA) signalling using a coordinated direct and relay transmission (CDRT) scheme with direct links to both the near-user (NU) and the far-user (FU). Both amplify-and-forward (AF) and decode-and-forward (DF) relaying are considered. In this framework, NU and FU combine the signals from BS and R to attain good outage performance and harness a diversity of two without any need for feedback. For the NU, this serves as an incentive to participate in NOMA signalling. For both NU and FU, expressions for outage probability and throughput are derived in closed form. High-SNR approximations to the outage probability are also presented. We demonstrate that the choice of power allocation coefficient and target rate is crucial to maximize the NU performance while ensuring a desired FU performance. We demonstrate performance gain of the proposed scheme over selective decode-and-forward (SDF) CDRT-NOMA in terms of three metrics: outage probability, sum throughput and energy efficiency. Further, we demonstrate that by choosing the target rate intelligently, the proposed CDRT NOMA scheme ensures higher energy efficiency (EE) in comparison to its orthogonal multiple access counterpart. Monte Carlo simulations validate the derived expressions.


Sign in / Sign up

Export Citation Format

Share Document