Analysis of Bandwidth of Microstrip Antenna for Broad Band Applications

Author(s):  
Deepak Niranjan ◽  
Satyendra Swarnkar

The anticipated antenna is studied and presented. The anticipated antenna is connected to probe feed when designed on IE3D software. The bandwidth, gain, VSWR, and reflection coefficient have been found which is of 77.71% bandwidth, and gain is of 4.1 dBi. This antenna is compact, lightweight, and suitable for portable devices. By using some advanced techniques, the antenna provides dual bandwidth and triple bandwidth. The anticipated antenna provided large bandwidth for and is utilized for broadband applications.

2017 ◽  
Vol 9 (8) ◽  
pp. 1705-1712
Author(s):  
Haixiong Li ◽  
Yunlong Gong ◽  
Jiakai Zhang ◽  
Jun Ding ◽  
Chenjiang Guo

In this study, a dual-layered polarization and frequency reconfigurable microstrip antenna is proposed based on sequential mechanical axial rotation of the circular metal radiator. The antenna can be reconfigured among three different polarized modes, including the linear polarization (LP), left-handed circular polarization and right-handed circular polarization in the band from 4.68 to 4.80 GHz (2.53%). The resonance frequency of the proposed antenna with the same LP mode could also be tuned in the range from 4.70 to 5.03 GHz by mechanical rotation of the breach-truncated circular metal radiator as well as the circular substrate. Furthermore, the polarization characteristic and frequency can be reconfigured, respectively, as the circular radiator is taken an axial rotation with an angle of 360°. The presented antenna in the four different states has been numerically simulated and fabricated for the experimental measurement, the investigated characteristics includes the port reflection coefficient, axial ratio, radiation pattern, gain, and the radiation efficiency. The simulated and test results agreed well with each other. This antenna enriches the novel mechanical reconfigurable method except for the popular electrical approach.


2021 ◽  
Vol 10 (4) ◽  
pp. 2055-2061
Author(s):  
Rasha Mahdi Salih ◽  
Ali Khalid Jassim

This work builds a metamaterial (MTM) superstrate loaded on a patch of microstrip antenna for wireless communications. The MTM superstrate is made up of four G-shaped resonators on FR-4 substrate with a relative permittivity of 4.4 and has a total area of (8×16) mm2, and is higher than the patch. The MTM superstrate increases antenna gain while also raising the input reflection coefficient. When it is 9 mm above the patch, the gain increased from 3.28 dB to 6.02 dB, and when it is 7 mm above the patch, the input reflection coefficient was enhanced from -31.217 dB to -45.8 dB. When the MTM superstrate loaded antenna was compared to the traditional unloaded antenna, it was discovered that metamaterials have a lot of potential for improving antenna performance.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Pingyuan Zhou ◽  
Zhuo Zhang ◽  
Mang He ◽  
Yihang Hao ◽  
Chuanfang Zhang

A small-size 2×2 broadband circularly polarized microstrip antenna array is proposed in this article. The array has four broadband dual-feed U-slot patch antenna elements with circular polarization, and the sequential feeding technique is used to further enhance the 3 dB axial ratio bandwidth. The lateral size of the fabricated array is as small as 1.33λ0×1.33λ0, and the profile is only 0.04λ0. Measured results show that the overlapped −10 dB reflection coefficient and the 3 dB AR bandwidth is 53%, and the variation of the measured realized gain is less than 1 dB for S-band satellite communications (1.98–2.2 GHz).


2016 ◽  
Vol 78 (5-9) ◽  
Author(s):  
Muhammad Fauzan Edy Purnomo ◽  
Hadi Suyono ◽  
Panca Mudjirahardjo ◽  
Rini Nur Hasanah

The circularly polarized (CP) microstrip antennas, both of singly- and doubly-fed types, possess inherent limitation in gain, impedance and axial-ratio bandwidths. These limitations are caused mainly by the natural resonance of the patch antenna which has a high unloaded Q-factor and the frequency-dependent excitation of two degenerative modes (TM01 and TM10) when using a single feed. Many applications which require circular polarization, large bandwidth, and good performance, especially in the field of wireless communication, are still difficult to be designed by using antenna software. Some consideration to take will include the application target and design specification, the materials to be used, and the method to choose (formula, numerical analysis, etc). This paper explains and analyzes the singly-fed microstrip antenna with circular polarization and large bandwidth. This singly-fed type of microstrip antenna provides certain advantage of requiring no external circular polarizer, e.g. the 900 hybrid, as it only needs to apply some perturbation or modification to a patch radiator with a standard geometry. The design of CP and large-bandwidth microstrip antenna is done gradually, by firstly truncating one tip, then truncating the whole three tips, and finally modifying it into a pentagonal patch structure and adding an air-gap to obtain larger bandwidths of impedance, gain and axial ratio. The last one antenna structure results in a novelty because it is a rare design of antenna which includes all types of bandwidth (impedance, gain, and axial ratio) being simultaneously larger than the origin antenna. The resulted characteristic performance of the 1-tip (one-tip) antenna shows respectively 1.9% of impedance bandwidth, 3.1% of gain bandwidth, and 0.45% of axial-ratio bandwidth. For the 3-tip (three-tip) step, the resulted bandwidths of respectively impedance, gain, and axial ratio are 1.7%, 3.3% and 0.5%. The pentagonal structure resulted in the bandwith values of 15.67%, 52.16% and 4.11% respectively for impedance, gain, and axial ratio. 


2014 ◽  
Vol 2014 ◽  
pp. 1-1
Author(s):  
Alistair P. Duffy ◽  
Mohammad Naser-Moghadasi ◽  
Jalil Rashed-Mohassel ◽  
Bal Singh Virdee

2013 ◽  
Vol 427-429 ◽  
pp. 648-651
Author(s):  
Xiao Feng Xiong ◽  
Wei Dong Chen

A novel broad band and wide beam microstrip helical antenna is proposed based on the modification of traditional helical antennas. Through selecting the appropriate operating mode between the axial mode and the normal mode, this new antenna can broad both the beamwidth and the bandwidth. To improve the gain of the antenna, An antenna array with 1*16 elements is designed and fabricated. Meanwhile, cavity-loaded feeding network is utilized for probe station measurement. The simulated impedance and radiation pattern are studied. The proposed antenna shows a wide impedance bandwidth from 7.6GHz to 9.6GHz for |S11|<-10dB, with wide 3dB beamwidth of E-plane about 1200, respectively.


2019 ◽  
Vol 11 (2) ◽  
pp. 165-175 ◽  
Author(s):  
Wafaa Mohammed Hashim ◽  
Asst. prof. Dr. Adheed Hasan Sallomi

a staircase patch microstrip antenna with slots is proposed to cover the 2G/3G/4G cellular mobile base station bands, when the antenna is excited with a transmission line, creates several modes these modes are composite to obtain a large bandwidth. The proposed antenna operates in the band from 0.86 GHz to 4.78 GHz with an impedance bandwidth of 138%. The use of staircase patch antenna is to achieve more attractive performance such as wider bandwidth, better impedance matching and better radiation. Inserting different slots to the patch of the antenna to enhance the gain and return loss. The gain is obtained ranging from 2.18 dBi to 5.3 dBi. Good radiation efficiencies ranging from 70% to 97% is achieved.


Sign in / Sign up

Export Citation Format

Share Document