Nanophytotherapeutics for Cancer

2022 ◽  
pp. 114-159
Author(s):  
Magdalena Pérez Ortiz ◽  
Angélica Guerrero-Castilla ◽  
E. Cristina Quispe Chávez

Phytochemicals have been attributed beneficial health properties, mainly their anticancer potential. Cancer treatment seeks to shrink the tumor and kill cancer cells; however, the conventional treatment available frequently fails due to the emergence of drug-resistant cell lines. Plant-derived compounds have been studied for their potential anticancer effects or as adjuvant drug to conventional treatment. However, some of the physicochemical properties and stability characteristics of the phytocompounds generate biopharmaceuticals difficulties that limit their efficacy and clinical applications in oncology. In this sense, nanomedicine offers an alternative for the development of biocompatible, biodegradable, safe, and efficacy phytoformulations. Nanostructured delivery systems show immense potential in the bioavailability of phytodrugs by providing better alternatives to conventional dosage forms, through improving physicochemical and biopharmaceutical properties of the phytocompounds and along with it to enhance the therapeutic efficacy.

2020 ◽  
Vol 26 (45) ◽  
pp. 5783-5792
Author(s):  
Kholood Abid Janjua ◽  
Adeeb Shehzad ◽  
Raheem Shahzad ◽  
Salman Ul Islam ◽  
Mazhar Ul Islam

There is compelling evidence that drug molecules isolated from natural sources are hindered by low systemic bioavailability, poor absorption, and rapid elimination from the human body. Novel approaches are urgently needed that could enhance the retention time as well as the efficacy of natural products in the body. Among the various adopted approaches to meet this ever-increasing demand, nanoformulations show the most fascinating way of improving the bioavailability of dietary phytochemicals through modifying their pharmacokinetics and pharmacodynamics. Curcumin, a yellowish pigment isolated from dried ground rhizomes of turmeric, exhibits tremendous pharmacological effects, including anticancer activities. Several in vitro and in vivo studies have shown that curcumin mediates anticancer effects through the modulation (upregulation and/or downregulations) of several intracellular signaling pathways both at protein and mRNA levels. Scientists have introduced multiple modern techniques and novel dosage forms for enhancing the delivery, bioavailability, and efficacy of curcumin in the treatment of various malignancies. These novel dosage forms include nanoparticles, liposomes, micelles, phospholipids, and curcumin-encapsulated polymer nanoparticles. Nanocurcumin has shown improved anticancer effects compared to conventional curcumin formulations. This review discusses the underlying molecular mechanism of various nanoformulations of curcumin for the treatment of different cancers. We hope that this study will make a road map for preclinical and clinical investigations of cancer and recommend nano curcumin as a drug of choice for cancer therapy.


2006 ◽  
Vol 74 (4) ◽  
pp. 160-166 ◽  
Author(s):  
Shiro Iuchi ◽  
Meytha Marsch-Moreno ◽  
Cristina Velez-DelValle ◽  
Karen Easley ◽  
Walid Kuri-Harcuch ◽  
...  

Oncotarget ◽  
2017 ◽  
Vol 8 (43) ◽  
pp. 74466-74478 ◽  
Author(s):  
Andrzej Klejewski ◽  
Karolina Sterzyńska ◽  
Karolina Wojtowicz ◽  
Monika Świerczewska ◽  
Małgorzata Partyka ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document