Solar Energy Investment Forecast to 2040

Author(s):  
Andrey Kraykin ◽  
Zaffar Ahmed Shaikh

The main purpose of the study is to compare various factors that affect the development of the industry. The chapter analyzes the literature on various issues related directly or indirectly to the development of the industry. Several research methods are used: comparison of the influence of various factors on the price of solar electricity using the vector autoregression model (VAR model). The chapter describes the risks associated with competition (first of all, for the territories where solar panels are supposed to be located). The result of the chapter is a forecast for the supply of solar energy in the next 20 years. In the 21st century, the use of solar energy has become very popular, primarily due to the fact that solar power plants are least harmful to the environment, compared to other types of power plants. Recent research in the field of solar power engineering has shown that using carbon nanotubes will double the efficiency of power plants, breaking the Shockley-Queisser limit. Such technologies can make solar power the most used electricity in the world.

Author(s):  
V. I. Mironchuk ◽  
A. A. Velchenko

The article presents an analysis of the state of development of solar energy in Europe and  the  Republic  of  Belarus  for 2020.  An algorithm for increasing the efficiency factor of  solar power plants by localizing the solar trajectory depending on the latitude and longitude of the area has been proposed. In particular, taking into account the angle of the Sun position above the horizon and the azimuth angle of the Sun, the increase in the efficiency factor of solar power plants for the Republic of Belarus is calculated. Based on this algorithm, a program has been written that makes it possible to draw a diagram of the solar trajectory. An analysis has been made of the degree of localization of solar energy for solstice days in 6 oblast (regional) centers of the Republic of Belarus; it is found that the highest intensity of solar radiation is observed in Brest and Gomel, the average in Grodno, Minsk and Mogilev, while the lowest one – in the city of Vitebsk. A comparative analysis of the solar trajectory of the city of Berlin (Germany) with the city of Gomel and the city of Brest is carried out. Recommendations have been developed for the effective operation of solar power plants in the oblast (regional) cities of the Republic of Belarus during the year in an autonomous and combined mode of operation. The obtained numerical calculations of the solar trajectory make it possible to optimize the orientation of solar panels for permanently installed panels and for automated solar tracking systems, as well as to select the optimal configuration of the power plant equipment for any geographic area.


2021 ◽  
Vol 11 (15) ◽  
pp. 6887
Author(s):  
Chung-Hong Lee ◽  
Hsin-Chang Yang ◽  
Guan-Bo Ye

In recent years, many countries have provided promotion policies related to renewable energy in order to take advantage of the environmental factors of sufficient sunlight. However, the application of solar energy in the power grid also has disadvantages. The most obvious is the variability of power output, which will put pressure on the system. As more grid reserves are needed to compensate for fluctuations in power output, the variable nature of solar power may hinder further deployment. Besides, one of the main issues surrounding solar energy is the variability and unpredictability of sunlight. If it is cloudy or covered by clouds during the day, the photovoltaic cell cannot produce satisfactory electricity. How to collect relevant factors (variables) and data to make predictions so that the solar system can increase the power generation of solar power plants is an important topic that every solar supplier is constantly thinking about. The view is taken, therefore, in this work, we utilized the historical monitoring data collected by the ground-connected solar power plants to predict the power generation, using daily characteristics (24 h) to replace the usual seasonal characteristics (365 days) as the experimental basis. Further, we implemented daily numerical prediction of the whole-point power generation. The preliminary experimental evaluations demonstrate that our developed method is sensible, allowing for exploring the performance of solar power prediction.


2019 ◽  
Vol 2 ◽  
pp. 23-29
Author(s):  
Youssef El Hadri ◽  
Valeriy Khokhlov ◽  
Mariia Slizhe ◽  
Kateryna Sernytska ◽  
Kateryna Stepanova

Morocco's energy system is highly dependent on external energy markets. According to the Ministry Energy, Mines and Sustainable Development today more than 93 % of energy resources are imported to Morocco. In 2008 the Moroccan Government has developed a National Energy Strategy, and one of its priority areas is to increase the share of renewable technologies in the country's energy sector. Morocco is rich in solar energy resources. Studies on the assessment of the Morocco’s solar energy potential indicate, among other benefits, low additional costs when using solar installations compared to losses associated with the solution of future climate problems and lack of resources. The plan envisages the commissioning of solar power plants in Ouarzazate, Ain Ben Mathar, Boujdour, Tarfaya and Laayoune by 2020. The aim of this research is determination of the characteristics of the distribution of Surface Downwelling Shortwave Radiation in the area of the solar power Boujdour, Tarfaya and Laayoune, located in the Laayoune − Sakia El Hamra region in 2021−2050. The data from regional climate modeling with high spatial resolution of the CORDEX-Africa project are used in this research. The RCM modeling is carried out for the region of Africa, in a rectangular coordinate system with a spatial resolution of ~ 44 km. Then, from the modeling data, values are highlighted for the territory of Laayoune − Sakia El Hamra region. Model calculation is performed taking into account the greenhouse gas concentration trajectory of RCP 4.5 calculated using 11 regional climate models. As a result of the simulation for the period 2021−2050, average monthly values of the Surface Downwelling Shortwave Radiation "RSDS" (W/m2) are derived, on the basis of which the mean values for the period of time are calculated. For more detailed information, average monthly total cloud cover values "TC" (%) for the period under study are calculated. Analysis of the change in RSDS in 2021–2050 relative to the recent climatic period is shown that in the Laayoune − Sakia El Hamra region we can expect an increase or retention of its values. The annual run of the RSDS has one maximum in June and one minimum in December. In the future, the distribution of RSDS in the Laayoune − Sakia El Hamra region will have a significant impact on proximity to the Atlantic Ocean, where an increased amount of total cloud cover significantly reduces the amount of incoming radiation. In the location of solar power plants in the near future, the current RSDS values are expected to be maintained, which creates favorable conditions for the further development of the renewable energy industry in this area and increasing its productivity.


2020 ◽  
Vol 30 (3) ◽  
pp. 480-497
Author(s):  
Dmitriy S. Strebkov ◽  
Yuriy Kh. Shogenov ◽  
Nikolay Yu. Bobovnikov

Introduction. An urgent scientific problem is to increase the efficiency of using solar energy in solar power plants (SES). The purpose of the article is to study methods for increasing the efficiency of solar power plants. Materials and Methods. Solar power plants based on modules with a two-sided working surface are considered. Most modern solar power plants use solar modules. The reflection of solar radiation from the earth’s surface provides an increase in the production of electrical energy by 20% compared with modules with a working surface on one side. It is possible to increase the efficiency of using solar energy by increasing the annual production of electric energy through the creation of equal conditions for the use of solar energy by the front and back surfaces of bilateral solar modules. Results. The article presents a solar power plant on a horizontal surface with a vertical arrangement of bilateral solar modules, a solar power station with a deviation of bilateral solar modules from a vertical position, and a solar power plant on the southern slope of the hill with an angle β of the slope to the horizon. The formulas for calculating the sizes of the solar energy reflectors in the meridian direction, the width of the solar energy reflectors, and the angle of inclination of the solar modules to the horizontal surface are given. The results of computer simulation of the parameters of a solar power plant operating in the vicinity of Luxor (Egypt) are presented. Discussion and Conclusion. It is shown that the power generation within the power range of 1 kW takes a peak value for vertically oriented two-sided solar modules with horizontal reflectors of sunlight at the installed capacity utilization factor of 0.45. At the same time, when the solar radiation becomes parallel to the plane of vertical solar modules, there is a decrease in the output of electricity. The proposed design allows equalizing and increasing the output of electricity during the maximum period of solar radiation. Vertically oriented modules are reliable and easy to use while saving space between modules.


Kilat ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 261-271
Author(s):  
Sugeng Purwanto

ABSTRACT Renewable energy is potential alternative energy to replace the central role of fossil energy which has been going on since the early 20th century. The solar power plant is alternative energy, especially for households and industry, and can be designed as a hybrid power plant consisting of solar panels, batteries, an automatic transfer switch (ATS), and a grid. This research will focus on developing ATS based on a microcontroller. It functions to regulate the load supply automatically from the three sources of electrical energy, like solar panels, batteries, and grid while the microcontroller functions to monitor the transfer of power from the solar power plant to grid and voltage movements in the system so that current and voltage data can be recorded from time to time to improve system reliability, effectiveness, and efficiency of the tool. ATS components consist of MCB, magnetic contactor, timer H3CR, relay, 2000VA inverter, solar charge controller 100A, NodeMCU ESP8266 IoT, and battery 12V 100AH. This research is conducted in one year to produce ATS based on a microcontroller that can automatically regulate the supply of loads from the three sources of electrical energy with a good level of efficiency and stability.  Keywords: solar power plants, hybrid power plants, an automatic transfer switch.  ABSTRAK Energi baru terbarukan merupakan energi alternatif yang potensial untuk menggantikan peran sentral dari energi fosil yang telah berlangsung sejak awal abad ke 20. PLTS merupakan salah satu energi alternatif penyedia energi listrik untuk rumah tangga dan industri serta dapat dirancang sebagai sistem pembangkit listrik tenaga hibrid (PLTH) yang terdiri dari panel surya, baterai, sistem pengaturan beban atau ATS (automatic transfer switch) dan jaringan PLN. Peneltian difokuskan pada pengembangan sistem ATS berbasiskan mikrokontroler. ATS berfungsi untuk mengatur suplai beban secara otomatis dari ketiga sumber energi listrik yaitu panel surya, baterai dan PLN sedangkan mikrokontroler berfungsi memonitor perpindahan daya dari PLTS ke sumber PLN dan pergerakan tegangan pada sistem sehingga dapat dilakukan pencatatan data arus dan tegangan dari waktu ke waktu sehingga dapat meningkatkan keandalan sistem, efektifitas dan efisiensi alat. Komponen ATS terdiri dari MCB, magnetic contactor, timer H3CR, relay, inverter 2000VA, solar charge controller 100A, NodeMCU ESP8266 IoT, dan baterai 12V 100Ah. Penelitian ini akan dilakukan dalam periode satu tahun menghasilkan ATS berbasiskan mikrokontroler yang dapat mengatur suplai beban secara otomatis dari ketiga sumber energi listrik dengan tingkat efisiensi dan kestabilan yang baik. Tim penelitian ini tediri dari 3 orang dan berasal dari program studi teknik elektro, IT PLN.  Kata kunci: pembangkit listrik tenaga surya, pembangkit listrik tenaga hibrid, pengaturan suplai beban.


Kilat ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 115-124
Author(s):  
Tri Joko Pramono ◽  
Erlina Erlina ◽  
Zainal Arifin ◽  
Jef Saragih

Solar Power Plant is one of the New Renewable Energy power plants. Solar panels can produce unlimited amounts of electrical energy directly taken from the sun, with no rotating parts and no fuel. In this study are optimize solar power plants using hybrid systems with electricity companies and the use of semi-transparent solar panels in high rise buildings to meet the burden of the building. The research will discussed about use of solar power plants using semi-transparent solar panels in multi-storey buildings. The solar panel used for the facade is a semi-transparent solar panel makes its function become two, that is to produce electrical energy as well as glass through which sunlight and can see the view outside the building without reducing the building's aesthetic value. In this study is the value of solar radiation taken from west is the lowest value in November 1.4 Kwh can produce energy PLTS 3,855 Kwh and the highest solar radiation in July amounted to 3.75 Kwh can produce energy PLTS 10.331 Kwh. From the utilization of this PLTS system, Performance Ratio of 85% was obtained using study of 36 panels on the 3rd to 5th floors, this system can be said to feasible.  


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 312
Author(s):  
Abdulaziz Alhammad ◽  
Qian (Chayn) Sun ◽  
Yaguang Tao

Many countries have set a goal for a carbon neutral future, and the adoption of solar energy as an alternative energy source to fossil fuel is one of the major measures planned. Yet not all locations are equally suitable for solar energy generation. This is due to uneven solar radiation distribution as well as various environmental factors. A number of studies in the literature have used multicriteria decision analysis (MCDA) to determine the most suitable places to build solar power plants. To the best of our knowledge, no study has addressed the subject of optimal solar plant site identification for the Al-Qassim region, although developing renewable energy in Saudi Arabia has been put on the agenda. This paper developed a spatial MCDA framework catering to the characteristics of the Al-Qassim region. The framework adopts several tools used in Geographic Information Systems (GIS), such as Random Forest (RF) raster classification and model builder. The framework aims to ascertain the ideal sites for solar power plants in the Al-Qassim region in terms of the amount of potential photovoltaic electricity production (PVOUT) that could be produced from solar energy. For that, a combination of GIS and Analytical Hierarchy Process (AHP) techniques were employed to determine five sub-criteria weights (Slope, Global Horizontal Irradiance (GHI), proximity to roads, proximity to residential areas, proximity to powerlines) before performing spatial MCDA. The result showed that ‘the most suitable’ and ‘suitable’ areas for the establishment of solar plants are in the south and southwest of the region, representing about 17.53% of the study area. The ‘unsuitable’ areas account for about 10.17% of the total study area, which is mainly concentrated in the northern part. The rest of the region is further classified into ‘moderate’ and ‘restricted’ areas, which account for 46.42% and 25.88%, respectively. The most suitable area for potential solar energy, yields approximately 1905 Kwh/Kwp in terms of PVOUT. The proposed framework also has the potential to be applied to other regions nationally and internationally. This work contributes a reproducible GIS workflow for a low-cost but accurate adoption of a solar energy plan to achieve sustainable development goals.


Author(s):  
I. R. Vashchyshak ◽  
V. S Tsykh

The urgency of the work is due to the feasibility of increasing the energy efficiency of solar power plants through the use of solar energy concentrators. Ways to improve the energy efficiency of solar panels using a sys-tem of directional mirrors, flat Fresnel lenses, spherical concentrators and trackers have been investigated. It is established that the most optimal way to improve the energy efficiency of solar panels is to use inexpensive track-ers with a simple design. The analysis of known types of solar panels, which differ in materials from which their elements are made, and the coefficients of efficiency – dependence of energy produced by a photocell on the intensity of solar radiation per unit of its surface has been carried out, and the type of solar panels by the criterion “price-quality” has been selected. A tracker design has been developed to track the angle of inclination of solar panels to increase efficiency. The electricity generated by the proposed solar power plant was calculated using an online calculator. It is projected to reduce losses when generating electricity for a given power plant due to the use of a tracker compared to a fixed power system, with the same number of solar panels. In order to reduce the cost of the tracker, it is suggested to orientate it to the south at once, and to change the inclination angles twice a year (in early April and late August). The energy efficiency of the power plant is calculated in two stages. At the first stage the amount of electricity from solar panels per year when adjusting only the angle of inclination of the panels to the south is calculated. At the second stage energy efficiency of the power plant is calculated taking into account the increase of energy efficiency of the solar power plant when using the tracker system. The calculated electricity generation of the proposed solar power plant with tracker confirmed the efficiency and feasibility of using the designed tracker system. The application of the designed tracker system allows to increase the energy efficiency of solar panels by an average of 25%.


Sign in / Sign up

Export Citation Format

Share Document