The Weighted Fuzzy Barycenter

Author(s):  
Julio Rojas-Mora ◽  
Didier Josselin ◽  
Jagannath Aryal ◽  
Adrien Mangiavillano ◽  
Philippe Ellerkamp

In this paper, the authors present a methodology to solve the weighted barycenter problem when the data is inherently fuzzy. This method, from data clustered by expert visual inspection of maps, calculates bi-dimensional fuzzy numbers from the spatial clusters, which in turn are used to obtain the weighted fuzzy barycenter of a particular area. The authors apply the methodology, to a particularly apt data set of forest fire breakouts in the PACA region of southeastern France, gathered from 1986 to 2008, and sliced into five periods over which the fuzzy weighted barycenter for each one is obtained. Two weighting schemes based on fire intensity and fire density in a cluster were used. The center provided with this fuzzy method provides leeway to planners, which can see how the membership function of the fuzzy solution can be used as a measurement of “appropriateness” of the final location.

2013 ◽  
Vol 1 (2) ◽  
pp. 82-86 ◽  
Author(s):  
Anamika Dutta ◽  
Dhruba Das ◽  
Hemanta Baruah

2021 ◽  
Vol 5 (2) ◽  
pp. 63-67
Author(s):  
Mohamed Ali A ◽  
Rajkumar N

We  study  the  problem:   if  a˜i,   i  ∈  N   are  fuzzy  numbers  of  triangular  form,  then  what is the membership function of the infinite (or finite) sum -˜a1   +  a˜2   +  · · ·   (defined  via  the sub-product-norm convolution)


2020 ◽  
Vol 9 (11) ◽  
pp. 9273-9286
Author(s):  
N. Rameshan ◽  
D.S. Dinagar

The concept of this paper represents finding fuzzy critical path using octagonal fuzzy number. In project scheduling, a new method has been approached to identify the critical path by using Symmetric Octagonal Intuitionistic Fuzzy Number (SYMOCINTFN). For getting a better solution, we use the fuzzy octagonal number rather than other fuzzy numbers. The membership functions of the earliest and latest times of events are by calculating lower and upper bounds of the earliest and latest times considering octagonal fuzzy duration. The resulting conditions omit the negative and infeasible solution. The membership function takes up an essential role in finding a new solution. Based on membership function, fuzzy number can be identified in different categories such as Triangular, Trapezoidal, pentagonal, hexagonal, octagonal, decagonal, hexa decagonal fuzzy numbers etc.


2020 ◽  
Vol 39 (3) ◽  
pp. 4427-4441
Author(s):  
Bin Xu

The concept of fuzzy number intuitionistic fuzzy sets (FNIFSs) is designed to effectively depict uncertain information in decision making problems which fundamental characteristic of the FNIFS is that the values of its membership function and non-membership function are depicted with triangular fuzzy numbers (TFNs). The dual Hamy mean (DHM) operator gets good performance in the process of information aggregation due to its ability to capturing the interrelationships among aggregated values. In this paper, we used the dual Hamy mean (DHM) operator and dual weighted Hamy mean (WDHM) operator with fuzzy number intuitionistic fuzzy numbers (FNIFNs) to propose the fuzzy number intuitionistic fuzzy dual Hamy mean (FNIFDHM) operator and fuzzy number intuitionistic fuzzy weighted dual Hamy mean (FNIFWDHM) operator. Then the MADM methods are proposed along with these operators. In the end, we utilize an applicable example for computer network security evaluation to prove the proposed methods.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lukman E. Mansuri ◽  
D.A. Patel

PurposeHeritage is the latent part of a sustainable built environment. Conservation and preservation of heritage is one of the United Nations' (UN) sustainable development goals. Many social and natural factors seriously threaten heritage structures by deteriorating and damaging the original. Therefore, regular visual inspection of heritage structures is necessary for their conservation and preservation. Conventional inspection practice relies on manual inspection, which takes more time and human resources. The inspection system seeks an innovative approach that should be cheaper, faster, safer and less prone to human error than manual inspection. Therefore, this study aims to develop an automatic system of visual inspection for the built heritage.Design/methodology/approachThe artificial intelligence-based automatic defect detection system is developed using the faster R-CNN (faster region-based convolutional neural network) model of object detection to build an automatic visual inspection system. From the English and Dutch cemeteries of Surat (India), images of heritage structures were captured by digital camera to prepare the image data set. This image data set was used for training, validation and testing to develop the automatic defect detection model. While validating this model, its optimum detection accuracy is recorded as 91.58% to detect three types of defects: “spalling,” “exposed bricks” and “cracks.”FindingsThis study develops the model of automatic web-based visual inspection systems for the heritage structures using the faster R-CNN. Then it demonstrates detection of defects of spalling, exposed bricks and cracks existing in the heritage structures. Comparison of conventional (manual) and developed automatic inspection systems reveals that the developed automatic system requires less time and staff. Therefore, the routine inspection can be faster, cheaper, safer and more accurate than the conventional inspection method.Practical implicationsThe study presented here can improve inspecting the built heritages by reducing inspection time and cost, eliminating chances of human errors and accidents and having accurate and consistent information. This study attempts to ensure the sustainability of the built heritage.Originality/valueFor ensuring the sustainability of built heritage, this study presents the artificial intelligence-based methodology for the development of an automatic visual inspection system. The automatic web-based visual inspection system for the built heritage has not been reported in previous studies so far.


2018 ◽  
Author(s):  
Mercy Nyamewaa Asiedu ◽  
Anish Simhal ◽  
Usamah Chaudhary ◽  
Jenna L. Mueller ◽  
Christopher T. Lam ◽  
...  

AbstractGoalIn this work, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol’s iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance.MethodsWe developed algorithms to pre-process pathology-labeled cervigrams and to extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol’s iodine, and a combination of the two contrasts.ResultsThe proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, 63% accuracy).ConclusionThe results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol’s iodine images may provide unbiased automation of cervigrams.SignificanceThis would enable automated, expert-level diagnosis of cervical pre-cancer at the point-of-care.


2005 ◽  
Vol 128 (4) ◽  
pp. 928-935 ◽  
Author(s):  
Liu Du ◽  
K. K. Choi ◽  
Byeng D. Youn ◽  
David Gorsich

The reliability based design optimization (RBDO) method is prevailing in stochastic structural design optimization by assuming the amount of input data is sufficient enough to create accurate input statistical distribution. If the sufficient input data cannot be generated due to limitations in technical and/or facility resources, the possibility-based design optimization (PBDO) method can be used to obtain reliable designs by utilizing membership functions for epistemic uncertainties. For RBDO, the performance measure approach (PMA) is well established and accepted by many investigators. It is found that the same PMA is a very much desirable approach also for the PBDO problems. In many industry design problems, we have to deal with uncertainties with sufficient data and uncertainties with insufficient data simultaneously. For these design problems, it is not desirable to use RBDO since it could lead to an unreliable optimum design. This paper proposes to use PBDO for design optimization for such problems. In order to treat uncertainties as fuzzy variables, several methods for membership function generation are proposed. As less detailed information is available for the input data, the membership function that provides more conservative optimum design should be selected. For uncertainties with sufficient data, the membership function that yields the least conservative optimum design is proposed by using the possibility-probability consistency theory and the least conservative condition. The proposed approach for design problems with mixed type input uncertainties is applied to some example problems to demonstrate feasibility of the approach. It is shown that the proposed approach provides conservative optimum design.


2014 ◽  
Vol 4 (3) ◽  
pp. 181-187 ◽  
Author(s):  
Zhenyuan Wang ◽  
Li Zhang-Westmant

Abstract Based on the area between the curve of the membership function of a fuzzy number and the horizontal real axis, a characteristic as a new numerical index, called the expansion center, for fuzzy numbers is proposed. An intuitive and reasonable ranking method for fuzzy numbers based on this characteristic is also established. The new ranking method is applicable for decision making and data analysis in fuzz environments. An important criterion of the goodness for ranking fuzzy numbers, the geometric intuitivity, is also introduced. It guarantees coinciding with the natural ordering of the real numbers.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Yong Lu ◽  
Na Sun

The coverage quality and network lifetime are two key parameters in the research of sensor networks. The coverage quality shows direct influences on the network lifetime. Meanwhile, it is influenced by many other factors such as physical parameters and environmental parameters. To reveal the connection between the coverage quality and the parameters of target node concerned, a fusion coverage algorithm with controllable effective threshold is proposed based on the sensing probability model. We give the model for the membership function of coverage intensity as well as the prediction model for the fusion operator. The range for the effective threshold is presented according to the membership function model. Meanwhile, the maximum of the effective coverage intensity for the target nodes within the monitoring area is derived. The derivation of the maximal fusion coverage intensity is elaborated utilizing a processing function on the distances from the target node to the ones in the sensor node set. Furthermore, we investigate different network properties within the monitoring area such as network coverage quality, the dynamic change of parameters, and the network lifetime, based on the probability theory and the geometric theory. Finally, we present numerical simulations to verify the performances of our algorithm. It is shown under different settings that, compared with the demand coverage quality, the proposed algorithm could improve the network coverage quality by 15.66% on average. The simulation experiment results show that our proposed algorithm has an average improvement by 10.12% and 13.23% in terms of the performances on network coverage quality and network lifetime, respectively. The research results are enlightening to the edge coverage and nonlinear coverage problems within the monitoring area.


Sign in / Sign up

Export Citation Format

Share Document