Optimized Path Planning for Electric Vehicle Routing and Charging Station Navigation Systems

2020 ◽  
Vol 11 (3) ◽  
pp. 58-78 ◽  
Author(s):  
Mouhcine Elgarej ◽  
Mansouri Khalifa ◽  
Mohamed Youssfi

With the increase in the number of electric vehicles (EV) on the street in the last years, the drivers of EVs are suffering from the problem of guiding themselves toward the nearest charging stations for recharging their batteries or finding the shortest routes toward their destinations. Although, the electric vehicle planning problem (EPP) is designed to achieve several transactions such as battery energy restrictions and the challenge of finding the nearest charging stations to the position of the electric vehicle. In this work, a new distributed system for electric vehicle routing is based on a novel driving strategy using a distributed Ant system algorithm (AS). The distributed architecture minimizes the total travelling path for the EV to attain the destination by proposing a set of the nearest charging stations that can be visited for recharging during his travels. Simulation result proved that our prototype is able to prepare optimal solutions within a reasonable time and forwarding EVs toward the nearest charging stations during their trips.

Author(s):  
Mouhcine Elgarej ◽  
Mansouri Khalifa ◽  
Mohamed Youssfi

With the increase in the number of electric vehicles (EV) on the street in the last years, the drivers of EVs are suffering from the problem of guiding themselves toward the nearest charging stations for recharging their batteries or finding the shortest routes toward their destinations. Although, the electric vehicle planning problem (EPP) is designed to achieve several transactions such as battery energy restrictions and the challenge of finding the nearest charging stations to the position of the electric vehicle. In this work, a new distributed system for electric vehicle routing is based on a novel driving strategy using a distributed Ant system algorithm (AS). The distributed architecture minimizes the total travelling path for the EV to attain the destination by proposing a set of the nearest charging stations that can be visited for recharging during his travels. Simulation result proved that our prototype is able to prepare optimal solutions within a reasonable time and forwarding EVs toward the nearest charging stations during their trips.


2021 ◽  
Vol 13 (11) ◽  
pp. 6163
Author(s):  
Yongyi Huang ◽  
Atsushi Yona ◽  
Hiroshi Takahashi ◽  
Ashraf Mohamed Hemeida ◽  
Paras Mandal ◽  
...  

Electric vehicle charging station have become an urgent need in many communities around the world, due to the increase of using electric vehicles over conventional vehicles. In addition, establishment of charging stations, and the grid impact of household photovoltaic power generation would reduce the feed-in tariff. These two factors are considered to propose setting up charging stations at convenience stores, which would enable the electric energy to be shared between locations. Charging stations could collect excess photovoltaic energy from homes and market it to electric vehicles. This article examines vehicle travel time, basic household energy demand, and the electricity consumption status of Okinawa city as a whole to model the operation of an electric vehicle charging station for a year. The entire program is optimized using MATLAB mixed integer linear programming (MILP) toolbox. The findings demonstrate that a profit could be achieved under the principle of ensuring the charging station’s stable service. Household photovoltaic power generation and electric vehicles are highly dependent on energy sharing between regions. The convenience store charging station service strategy suggested gives a solution to the future issues.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2820 ◽  
Author(s):  
Hui Sun ◽  
Peng Yuan ◽  
Zhuoning Sun ◽  
Shubo Hu ◽  
Feixiang Peng ◽  
...  

With the popularization of electric vehicles, free charging behaviors of electric vehicle owners can lead to uncertainty about charging in both time and space. A time-spatial dispatching strategy for the distribution network guided by electric vehicle charging fees is proposed in this paper, which aims to solve the network congestion problem caused by the unrestrained and free charging behaviors of large numbers of electric vehicles. In this strategy, congestion severity of different lines is analyzed and the relationship between the congested lines and the charging stations is clarified. A price elastic matrix is introduced to reflect the degree of owners’ response to the charging prices. A pricing scheme for optimal real-time charging fees for multiple charging stations is designed according to the congestion severity of the lines and the charging power of the related charging stations. Charging price at different charging station at different time is different, it can influence the charging behaviors of vehicle owners. The simulation results confirmed that the proposed congestion dispatching strategy considers the earnings of the operators, charging cost to the owners and the satisfaction of the owners. Moreover, the strategy can influence owners to make judicious charging plans that help to solve congestion problems in the network and improve the safety and economy of the power grid.


2021 ◽  
Vol 4 (3) ◽  
pp. 63
Author(s):  
Sherif A. Zaid ◽  
Hani Albalawi ◽  
Khaled S. Alatawi ◽  
Hassan W. El-Rab ◽  
Mohamed E. El-Shimy ◽  
...  

The electric vehicle (EV) is one of the most important and common parts of modern life. Recently, EVs have undergone a big development thanks to the advantages of high efficiency, negligible pollution, low maintenance, and low noise. Charging stations are very important and mandatory services for electric vehicles. Nevertheless, they cause high stress on the electric utility grid. Therefore, renewable energy-sourced charging stations have been introduced. They improve the environmental issues of the electric vehicles and support remote area operation. This paper proposes the application of fuzzy control to an isolated charging station supplied by photovoltaic power. The system is modeled and simulated using Matlab/Simulink. The simulation results indicate that the disturbances in the solar insolation do not affect the electric vehicle charging process at all. Moreover, the controller perfectly manages the stored energy to compensate for the solar energy variations. Additionally, the system response with the fuzzy controller is compared to that with the PI controller. The comparison shows that the fuzzy controller provides an improved response.


Author(s):  
Azhar Ul-Haq ◽  
Marium Azhar

This chapter presents a detailed study of renewable energy integrated charging infrastructure for electric vehicles (EVs) and discusses its various aspects such as siting requirements, standards of charging stations, integration of renewable energy sources for powering up charging stations and interfacing devices between charging facilities and smart grid. A smart charging station for EVs is explained along with its essential components and different charging methodologies are explained. It has been recognized that the amalgamation of electric vehicles in the transportation sector will trigger power issues due to the mobility of vehicles beyond the stretch of home area network. In this regard an information and communication technology (ICT) based architecture may support EVs management with an aim to enhance the electric vehicle charging and energy storage capabilities with the relevant considerations. An ICT based solution is capable of monitoring the state of charge (SOC) of EV batteries, health and accessible amount of energy along with the mobility of EVs.


2013 ◽  
Vol 389 ◽  
pp. 1014-1018 ◽  
Author(s):  
Lei Tao ◽  
Xing Tong ◽  
Xin He ◽  
Hui Xu ◽  
Zhong Fu Tan

Whether charging the electric vehicle is convenient has an important impact on the promotion of electric vehicles, the construction of charging stations should minimize the total cost of charging the electric vehicles. In order to select the optimal building addresses of charging stations, this paper proposed a site selection method based on the Floyd shortest path algorithm. This method uses the analysis of the shortest charging path between the electric car rallying points by shortest path method, and combines the assumption of charging cost and the number of charging stations in order to minimize the total charging distance in the region. Through the example analysis, this method can select one or more optimal construction sites of charging stations in the regional networks quickly and conveniently, so that the minimum total charging distance can be got and the optimal economic benefits can be achieved, too.


2013 ◽  
Vol 291-294 ◽  
pp. 2362-2365
Author(s):  
Bo Ye ◽  
Zhang Zhou He ◽  
Guo Meng Huang ◽  
Xue Song He ◽  
Hui Quan Li

With the development of electric vehicle industry, it is necessary to construct more electric vehicle charging stations to promote the popularization of electric vehicles. As photovoltaic generation owns flexible installing, convenient power supplying, and environmental protecting characteristics, it is suitable for providing power for electric vehicle charging stations and reducing a network loads. After analyzed electric vehicle charging demand, this paper proposed the designing concept of the electric system for the photovoltaic generation mix charging station, which was based on the battery charging and discharging characteristics as well as its usage. Then, the paper provided a selection of electric equipments for the charging station and an electric wiring diagram after designing the electric system. This study and design may help for promoting construction of electric vehicle charging stations, and development and popularization of electric vehicles.


2021 ◽  
Vol 4 (2) ◽  
Author(s):  
Oleksii Serhiiovych Yama ◽  
Yurii Serhiiovych Olishevskii

The electric vehicle (EV) market is actively developing by leading car manufacturers around the world. The main efforts of developers are aimed at creating an efficient energy storage device - a rechargeable battery, because its parameters largely characterize the EV: power reserve and acceleration, engine power and others. But for the comfortable existence of EV in urban conditions requires a certain infrastructure, which includes charging stations, containing all the necessary equipment to charge the battery. In the results use many different terms and definitions that often describe the same phenomenon. This paper substantiates the need for systematization and analysis of equipment for charging electric vehicles. The methods of charging electric cars are considered in the work, the information on the ways of charging EV is arranged, parallels between different standards are made. Chargers for electric vehicles can be classified as follows: AC charging and DC charging. Both methods of EV charging are regulated by different standards in different countries. The US and Japan use the SAE J1772 standard, it covers both types of charging methods mentioned above. Its European adaptation is IEC 61851. The standard describes the power level of charging stations and types of EV sockets. The charging mode describes the safety communication protocol between the electric vehicle and the charging station. To establish a serial connection between the electric vehicle and the EVSE, there is a function "PILOT", which refers to the protocol IEC 61851, provides the necessary functions related to the communication of EV and EVSE. The connection detection sequence is performed automatically when the EVSE power control cable is physically connected to the EV. Of the many variants of controlled AC chargers, according to the authors, the most promising is the option based on an open project. The advantages are open data on the applied circuit solutions and code, as well as low cost compared to industrial designs, the availability of a user-friendly interface, the ability to create your own mobile application and connect a payment system. The disadvantage of the IEC 61851 protocol is the limited exchange of EVSE data with EV. Because only data on initialization, process and charge stop is transmitted via the exchange channel. The charging station cannot estimate the type of electric car, its characteristics, capacity and battery condition, maximum charging speed, etc. Implementing the above could be useful for creating things like load balancing and the potential for a possible return of electricity to the grid.


Electric Vehicles (EV) are the world’s future transport systems. With the rise in pollutions and its effects on the environment, there has been a large scale movetowards electrical vehicles. But the plug point availability for charging is the serious problem faced by the mostof Electric Vehicle consumers. Therefore, there is a definite need to move from the GRID based/connected charging stations to standalone off-grid stations for charging the Electric Vehicles. The objective of this paper is to arrive at the best configuration or mix of the renewable resources and energy storage systems along with conventional Diesel Generator set which together works in offgrid for Electric Vehicle charging. As aconclusion, by utilizing self-sustainable off-grid power generation technology, the availability of EV charging stations in remote localities at affordable price can be made and mainly it reduces burden on the existing electrical infrastructure.


Author(s):  
Rutuja Rajole ◽  
Rutuja Kakulte ◽  
Ashwin Pathak

Electric vehicles are a new and upcoming technology in the transportation and power sector that have many benefits in terms of economic and environmental. This study presents a comprehensive review and evaluation of various types of electric vehicles and its associated equipment in particular battery charger and charging station. A comparison is made on the commercial and prototype electric vehicles in terms of electric range, battery size, charger power and charging time. The various types of charging stations and standards used for charging electric vehicles have been outlined and the impact of electric vehicle charging on utility distribution systems is also discussed. The methodology presented here was time-and cost-effective, as well as scalable to other organizations that own charging stations. Electric vehicles (EVs) are becoming increasingly popular in many countries of the world. EVs are proving more energy efficient and environmental friendly. But the lack of charging stations restricts the wide adoption of EVs in the world. As EV usage grows, more public spaces are installing EV charging stations.


Sign in / Sign up

Export Citation Format

Share Document