Materialized View Selection Using Set Based Particle Swarm Optimization

Author(s):  
Amit Kumar ◽  
T.V. Vijay Kumar

A data warehouse is a central repository of historical data designed primarily to support analytical processing. These analytical queries are exploratory, long and complex in nature. Further, the rapid and continuous growth in the size of data warehouse increases the response times of such queries. Query response times need to be reduced in order to speedup decision making. This problem, being an NP-Complete problem, can be appropriately dealt with by using swarm intelligence techniques. One such technique, i.e. the set-based particle swarm optimization (SPSO), has been proposed to address this problem. Accordingly, a SPSO based view selection algorithm (SPSOVSA), which selects the Top-K views from a multidimensional lattice, is proposed. Experimental based comparison of SPSOVSA with the most fundamental view selection algorithm shows that SPSOVSA is able to select comparatively better quality Top-K views for materialization. The materialization of these selected views would improve the performance of analytical queries and lead to efficient decision making.

Author(s):  
Amit Kumar ◽  
T. V. Vijay Kumar

A data warehouse, which is a central repository of the detailed historical data of an enterprise, is designed primarily for supporting high-volume analytical processing in order to support strategic decision-making. Queries for such decision-making are exploratory, long and intricate in nature and involve the summarization and aggregation of data. Furthermore, the rapidly growing volume of data warehouses makes the response times of queries substantially large. The query response times need to be reduced in order to reduce delays in decision-making. Materializing an appropriate subset of views has been found to be an effective alternative for achieving acceptable response times for analytical queries. This problem, being an NP-Complete problem, can be addressed using swarm intelligence techniques. One such technique, i.e., the similarity interaction operator-based particle swarm optimization (SIPSO), has been used to address this problem. Accordingly, a SIPSO-based view selection algorithm (SIPSOVSA), which selects the Top-[Formula: see text] views from a multidimensional lattice, has been proposed in this paper. Experimental comparison with the most fundamental view selection algorithm shows that the former is able to select relatively better quality Top-[Formula: see text] views for materialization. As a result, the views selected using SIPSOVSA improve the performance of analytical queries that lead to greater efficiency in decision-making.


2020 ◽  
Vol 11 (3) ◽  
pp. 50-67
Author(s):  
Amit Kumar ◽  
T. V. Vijay Kumar

A data warehouse is a central repository of time-variant and non-volatile data integrated from disparate data sources with the purpose of transforming data to information to support data analysis. Decision support applications access data warehouses to derive information using online analytical processing. The response time of analytical queries against speedily growing size of the data warehouse is substantially large. View materialization is an effective approach to decrease the response time for analytical queries and expedite the decision-making process in relational implementations of data warehouses. Selecting a suitable subset of views that deceases the response time of analytical queries and also fit within available storage space for materialization is a crucial research concern in the context of a data warehouse design. This problem, referred to as view selection, is shown to be NP-Hard. Swarm intelligence have been widely and successfully used to solve such problems. In this paper, a discrete variant of particle swarm optimization algorithm, i.e. self-adaptive perturbation operator based particle swarm optimization (SPOPSO), has been adapted to solve the view selection problem. Accordingly, SPOPSO-based view selection algorithm (SPOPSOVSA) is proposed. SPOPSOVSA selects the Top-K views in a multidimensional lattice framework. Further, the proposed algorithm is shown to perform better than the view selection algorithm HRUA.


2021 ◽  
Vol 13 (1) ◽  
pp. 58-73
Author(s):  
Amit Kumar ◽  
T. V. Vijay Kumar

The data warehouse is a key data repository of any business enterprise that stores enormous historical data meant for answering analytical queries. These queries need to be processed efficiently in order to make efficient and timely decisions. One way to achieve this is by materializing views over a data warehouse. An n-dimensional star schema can be mapped into an n-dimensional lattice from which Top-K views can be selected for materialization. Selection of such Top-K views is an NP-Hard problem. Several metaheuristic algorithms have been used to address this view selection problem. In this paper, a swap operator-based particle swarm optimization technique has been adapted to address such a view selection problem.


2015 ◽  
Vol 5 (3) ◽  
pp. 1-25 ◽  
Author(s):  
Biri Arun ◽  
T.V. Vijay Kumar

Data warehouse was designed to cater to the strategic decision making needs of an organization. Most queries posed on them are on-line analytical queries, which are complex and computation intensive in nature and have high query response times when processed against a large data warehouse. This time can be substantially reduced by materializing pre-computed summarized views and storing them in a data warehouse. All possible views cannot be materialized due to storage space constraints. Also, an optimal selection of subsets of views is shown to be an NP-Complete problem. This problem of view selection has been addressed in this paper by selecting a beneficial set of views, from amongst all possible views, using the swarm intelligence technique Marriage in Honey Bees Optimization (MBO). An MBO based view selection algorithm (MBOVSA), which aims to select views that incur the minimum total cost of evaluating all the views (TVEC), is proposed. In MBOVSA, the search has been intensified by incorporating the royal jelly feeding phase into MBO. MBOVSA, when compared with the most fundamental greedy based view selection algorithm HRUA, is able to select comparatively better quality views.


2014 ◽  
Vol 687-691 ◽  
pp. 1399-1403
Author(s):  
Xiao Ling Yao ◽  
Yan Ni Wang

This paper proposes an automatic viewpoint selection algorithm based on the particle swarm optimization. The method introduces particle swarm optimization algorithm into the design of transfer function and viewpoint selection. By the method, the search for the transfer function and the optimal viewpoint are redeveloped as a global optimization problem to reduce the reluctant computations and interactions. And the image sequence focuses on the interesting part and displays the objects on the optimal position.


2014 ◽  
Vol 4 (1) ◽  
pp. 48 ◽  
Author(s):  
Abdorrahman Haeri ◽  
Kamran Rezaie ◽  
Seyed Morteza Hatefi

In recent years, integration between companies, suppliers or organizational departments attracted much attention. Decision making about integration encounters with major concerns. One of these concerns is which units should be integrated and what is the effect of integration on performance measures. In this paper the problem of decision making unit (DMU) integration is considered. It is tried to integrate DMUs so that the considered criteria are satisfied. In this research two criteria are considered that are mean of efficiencies of DMUs and the difference between DMUs that have largest and smallest efficiencies. For this purpose multi objective particle swarm optimization (MOPSO) is applied. A case with 17 DMUs is considered. The results show that integration has increased both considered criteria effectively.  Additionally this approach can presents different alternatives for decision maker (DM) that enables DM to select the final decision for integration.


Sign in / Sign up

Export Citation Format

Share Document