Research on System Architecture to Provide Maximum Security, End User Device Independency and User Centric Control over Content in Cloud

2013 ◽  
Vol 4 (3) ◽  
pp. 38-52
Author(s):  
Sai Manoj Marepalli ◽  
Razia Sultana ◽  
Andreas Christ

Cloud computing is the emerging technology providing IT as a utility through internet. The benefits of cloud computing are but not limited to service based, scalable, elastic, shared pool of resources, metered by use. Due to mentioned benefits the concept of cloud computing fits very well with the concept of m-learning which differs from other forms of e-learning, covers a wide range of possibilities opened up by the convergence of new mobile technologies, wireless communication structure and distance learning development. The concept of cloud computing like any other concept has not only benefits but also introduces myriad of security issues, such as transparency between cloud user and provider, lack of standards, security concerns related to identity, Service Level Agreements (SLA) inadequacy etc. Providing secure, transparent, and reliable services in cloud computing environment is an important issue. This paper introduces a secured three layered architecture with an advance Intrusion Detection System (advIDS), which overcomes different vulnerabilities on cloud deployed applications. This proposed architecture can reduce the impact of different attacks by providing timely alerts, rejecting the unauthorized access over services, and recording the new threat profiles for future verification. The goal of this research is to provide more control over data and applications to the cloud user, which are now mainly controlled by Cloud Service Provider (CSP).

2021 ◽  
Vol 17 (2) ◽  
pp. 179-195
Author(s):  
Priyanka Bharti ◽  
Rajeev Ranjan ◽  
Bhanu Prasad

Cloud computing provisions and allocates resources, in advance or real-time, to dynamic applications planned for execution. This is a challenging task as the Cloud-Service-Providers (CSPs) may not have sufficient resources at all times to satisfy the resource requests of the Cloud-Service-Users (CSUs). Further, the CSPs and CSUs have conflicting interests and may have different utilities. Service-Level-Agreement (SLA) negotiations among CSPs and CSUs can address these limitations. User Agents (UAs) negotiate for resources on behalf of the CSUs and help reduce the overall costs for the CSUs and enhance the resource utilization for the CSPs. This research proposes a broker-based mediation framework to optimize the SLA negotiation strategies between UAs and CSPs in Cloud environment. The impact of the proposed framework on utility, negotiation time, and request satisfaction are evaluated. The empirical results show that these strategies favor cooperative negotiation and achieve significantly higher utilities, higher satisfaction, and faster negotiation speed for all the entities involved in the negotiation.


Author(s):  
Olexander Melnikov ◽  
◽  
Konstantin Petrov ◽  
Igor Kobzev ◽  
Viktor Kosenko ◽  
...  

The article considers the development and implementation of cloud services in the work of government agencies. The classification of the choice of cloud service providers is offered, which can serve as a basis for decision making. The basics of cloud computing technology are analyzed. The COVID-19 pandemic has identified the benefits of cloud services in remote work Government agencies at all levels need to move to cloud infrastructure. Analyze the prospects of cloud computing in Ukraine as the basis of e-governance in development. This is necessary for the rapid provision of quality services, flexible, large-scale and economical technological base. The transfer of electronic information interaction in the cloud makes it possible to attract a wide range of users with relatively low material costs. Automation of processes and their transfer to the cloud environment make it possible to speed up the process of providing services, as well as provide citizens with minimal time to obtain certain information. The article also lists the risks that exist in the transition to cloud services and the shortcomings that may arise in the process of using them.


Author(s):  
Mohammed Radi ◽  
Ali Alwan ◽  
Abedallah Abualkishik ◽  
Adam Marks ◽  
Yonis Gulzar

Cloud computing has become a practical solution for processing big data. Cloud service providers have heterogeneous resources and offer a wide range of services with various processing capabilities. Typically, cloud users set preferences when working on a cloud platform. Some users tend to prefer the cheapest services for the given tasks, whereas other users prefer solutions that ensure the shortest response time or seek solutions that produce services ensuring an acceptable response time at a reasonable cost. The main responsibility of the cloud service broker is identifying the best data centre to be used for processing user requests. Therefore, to maintain a high level of quality of service, it is necessity to develop a service broker policy that is capable of selecting the best data centre, taking into consideration user preferences (e.g. cost, response time). This paper proposes an efficient and cost-effective plan for a service broker policy in a cloud environment based on the concept of VIKOR. The proposed solution relies on a multi-criteria decision-making technique aimed at generating an optimized solution that incorporates user preferences. The simulation results show that the proposed policy outperforms most recent policies designed for the cloud environment in many aspects, including processing time, response time, and processing cost. KEYWORDS Cloud computing, data centre selection, service broker, VIKOR, user priorities


Author(s):  
Shruthi P. ◽  
Nagaraj G. Cholli

Cloud Computing is the environment in which several virtual machines (VM) run concurrently on physical machines. The cloud computing infrastructure hosts multiple cloud service segments that communicate with each other using the interfaces. This creates distributed computing environment. During operation, the software systems accumulate errors or garbage that leads to system failure and other hazardous consequences. This status is called software aging. Software aging happens because of memory fragmentation, resource consumption in large scale and accumulation of numerical error. Software aging degrads the performance that may result in system failure. This happens because of premature resource exhaustion. This issue cannot be determined during software testing phase because of the dynamic nature of operation. The errors that cause software aging are of special types. These errors do not disturb the software functionality but target the response time and its environment. This issue is to be resolved only during run time as it occurs because of the dynamic nature of the problem. To alleviate the impact of software aging, software rejuvenation technique is being used. Rejuvenation process reboots the system or re-initiates the softwares. This avoids faults or failure. Software rejuvenation removes accumulated error conditions, frees up deadlocks and defragments operating system resources like memory. Hence, it avoids future failures of system that may happen due to software aging. As service availability is crucial, software rejuvenation is to be carried out at defined schedules without disrupting the service. The presence of Software rejuvenation techniques can make software systems more trustworthy. Software designers are using this concept to improve the quality and reliability of the software. Software aging and rejuvenation has generated a lot of research interest in recent years. This work reviews some of the research works related to detection of software aging and identifies research gaps.


Author(s):  
Shehnila Zardari ◽  
Funmilade Faniyi ◽  
Rami Bahsoon

In this chapter, the authors motivate the need for a systematic approach to cloud adoption from the risk perspective. The enormous potential of cloud computing for improved and cost-effective service delivery for commercial and academic purposes has generated unprecedented interest in its adoption. However, a potential cloud user faces numerous risks regarding service requirements, cost implications of failure, and uncertainty about cloud providers’ ability to meet service level agreements. Hence, the authors consider two perspectives of a case study to identify risks associated with cloud adoption. They propose a risk management framework based on the principle of GORE (Goal-Oriented Requirements Engineering). In this approach, they liken risks to obstacles encountered while realising cloud user goals, therefore proposing cloud-specific obstacle resolution tactics for mitigating identified risks. The proposed framework shows benefits by providing a principled engineering approach to cloud adoption and empowering stakeholders with tactics for resolving risks when adopting the cloud.


Author(s):  
Ajai K. Daniel

The cloud-based computing paradigm helps organizations grow exponentially through means of employing an efficient resource management under the budgetary constraints. As an emerging field, cloud computing has a concept of amalgamation of database techniques, programming, network, and internet. The revolutionary advantages over conventional data computing, storage, and retrieval infrastructures result in an increase in the number of organizational services. Cloud services are feasible in all aspects such as cost, operation, infrastructure (software and hardware) and processing. The efficient resource management with cloud computing has great importance of higher scalability, significant energy saving, and cost reduction. Trustworthiness of the provider significantly influences the possible cloud user in his selection of cloud services. This chapter proposes a cloud service selection model (CSSM) for analyzing any cloud service in detail with multidimensional perspectives.


2017 ◽  
Vol 2017 ◽  
pp. 1-14 ◽  
Author(s):  
Keyang Liu ◽  
Weiming Zhang ◽  
Xiaojuan Dong

With the growth of cloud computing technology, more and more Cloud Service Providers (CSPs) begin to provide cloud computing service to users and ask for users’ permission of using their data to improve the quality of service (QoS). Since these data are stored in the form of plain text, they bring about users’ worry for the risk of privacy leakage. However, the existing watermark embedding and encryption technology is not suitable for protecting the Right to Be Forgotten. Hence, we propose a new Cloud-User protocol as a solution for plain text outsourcing problem. We only allow users and CSPs to embed the ciphertext watermark, which is generated and embedded by Trusted Third Party (TTP), into the ciphertext data for transferring. Then, the receiver decrypts it and obtains the watermarked data in plain text. In the arbitration stage, feature extraction and the identity of user will be used to identify the data. The fixed Hamming distance code can help raise the system’s capability for watermarks as much as possible. Extracted watermark can locate the unauthorized distributor and protect the right of honest CSP. The results of experiments demonstrate the security and validity of our protocol.


2013 ◽  
Vol 660 ◽  
pp. 196-201 ◽  
Author(s):  
Muhammad Irfan ◽  
Zhu Hong ◽  
Nueraimaiti Aimaier ◽  
Zhu Guo Li

Cloud Computing is not a revolution; it’s an evolution of computer science and technology emerging by leaps and bounds, in order to merge all computer science tools and technologies. Cloud Computing technology is hottest to do research and explore new horizons of next generations of Computer Science. There are number of cloud services providers (Amazon EC2), Rackspace Cloud, Terremark and Google Compute Engine) but still enterprises and common users have a number of concerns over cloud service providers. Still there is lot of weakness, challenges and issues are barrier for cloud service providers in order to provide cloud services according to SLA (Service Level agreement). Especially, service provisioning according to SLAs is core objective of each cloud service provider with maximum performance as per SLA. We have identified those challenges issues, as well as proposed new methodology as “SLA (Service Level Agreement) Driven Orchestration Based New Methodology for Cloud Computing Services”. Currently, cloud service providers are using “orchestrations” fully or partially to automate service provisioning but we are trying to integrate and drive orchestration flows from SLAs. It would be new approach to provision cloud service and deliver cloud service as per SLA, satisfying QoS standards.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Ge Zhang ◽  
Lu Liu ◽  
Hao Guo

Cloud computing offers significant impacts on organization by changing how information systems are developed, deployed, operated, maintained, and paid for. Therefore, the adoption of cloud computing becomes the focus of relevant research; however, previous studies have mostly studied the factors affecting cloud computing adoption from the perspective of adopters, ignoring the influence of the vendors. This study defines cloud service capability and develops scale to measure it from the perspective of cloud computing vendors to empirically examine the impact of the supply-side of cloud computing. The initial scale of cloud service capability is constructed using qualitative research, and the formal scale is obtained after two rounds of pretest. The statistical results of matched data collected from 132 cloud computing vendors and their users show that cloud service capability significantly affects cloud computing adoption. This study shifts the research perspective on cloud adoption to make theoretical contributions and management insights from the perspective of cloud computing vendors.


2021 ◽  
Author(s):  
Kashif Mehboob Khan ◽  
Junaid Arshad ◽  
Waheed Iqbal ◽  
Sidrah Abdullah ◽  
Hassan Zaib

AbstractCloud computing is an important technology for businesses and individual users to obtain computing resources over the Internet on-demand and flexibly. Although cloud computing has been adopted across diverse applications, the owners of time-and-performance critical applications require cloud service providers’ guarantees about their services, such as availability and response times. Service Level Agreements (SLAs) are a mechanism to communicate and enforce such guarantees typically represented as service level objectives (SLOs), and financial penalties are imposed on SLO violations. Due to delays and inaccuracies caused by manual processing, an automatic method to periodically verify SLA terms in a transparent and trustworthy manner is fundamental to effective SLA monitoring, leading to the acceptance and credibility of such service to the customers of cloud services. This paper presents a blockchain-based distributed infrastructure that leverages fundamental blockchain properties to achieve immutable and trustworthy SLA monitoring within cloud services. The paper carries out an in-depth empirical investigation for the scalability of the proposed system in order to address the challenge of transparently enforcing real-time monitoring of cloud-hosted services leveraging blockchain technology. This will enable all the stakeholders to enforce accurate execution of SLA without any imprecisions and delays by maintaining an immutable ledger publicly across blockchain network. The experimentation takes into consideration several attributes of blockchain which are critical in achieving optimum performance. The paper also investigates key characteristics of these factors and their impact to the behaviour of the system for further scaling it up under various cases for increased service utilization.


Sign in / Sign up

Export Citation Format

Share Document