Smart Environmental Monitoring System

2019 ◽  
Vol 10 (1) ◽  
pp. 43-54
Author(s):  
Karthik Sudhakaran Menon ◽  
Brinzel Rodrigues ◽  
Akash Prakash Barot ◽  
Prasad Avinash Gharat

In today's world, air pollution has become a common phenomenon everywhere, especially in the urban areas, air pollution is a real-life problem. In urban areas, the increased number of hydrocarbons and diesel vehicles and the presence of industrial areas at the outskirts of the major cities are the main causes of air pollution. The problem is seriously intense within the metropolitan cities. The governments around the world are taking measure in their capability. The main aim of this project is to develop a system which may monitor and measure pollutants in the air in real time, tell the quality of air and log real-time data onto a remote server (Cloud Service). If the value of the parameters exceeds the given threshold value, then an alert message is sent with the GPS coordinates to the registered number of the authority or person so necessary actions can be taken. The Arduino board connects with Thingspeak cloud service platform using ESP8266 Wi-Fi module. The device uses multiple sensors for monitoring the parameters of the air pollution like MQ-135, MQ-7, DHT-22, sound sensor, LCD.

Author(s):  
Wei Jian Ng ◽  
Zuraini Dahari

Air pollution is one of the biggest threat for the environment and the human’s health. The monitoring of air pollution based on several atmospheric pollutants is becoming critical in most countries including Malaysia. This paper presents a development and enhancement features of real-time Internet of Things (IoT)-based environmental monitoring system for air quality. The proposed system will be beneficial to monitor the real-time data for a specific set of air quality parameters such as temperature, humidity and concentration of carbon monoxide, liquified petroleum gas (LPG) and smoke. An alarm system will be triggered if the concentration of carbon monoxide exceeds 50 ppm. Users can use their smartphone to view these data via Wi-Fi by installing an application called “AirProp”. Based on the collected data, this paper also analyses other contributing factors such as time and traffic condition on the temperature, humidity and concentration of pollutant gases at different locations. The advantage of the real-time system is it serves as the data base platform to store data up to certain duration of time. The data can be further analysed and leveraged by governments and researchers to mitigate air pollution.


2009 ◽  
Vol 14 (2) ◽  
pp. 109-119 ◽  
Author(s):  
Ulrich W. Ebner-Priemer ◽  
Timothy J. Trull

Convergent experimental data, autobiographical studies, and investigations on daily life have all demonstrated that gathering information retrospectively is a highly dubious methodology. Retrospection is subject to multiple systematic distortions (i.e., affective valence effect, mood congruent memory effect, duration neglect; peak end rule) as it is based on (often biased) storage and recollection of memories of the original experience or the behavior that are of interest. The method of choice to circumvent these biases is the use of electronic diaries to collect self-reported symptoms, behaviors, or physiological processes in real time. Different terms have been used for this kind of methodology: ambulatory assessment, ecological momentary assessment, experience sampling method, and real-time data capture. Even though the terms differ, they have in common the use of computer-assisted methodology to assess self-reported symptoms, behaviors, or physiological processes, while the participant undergoes normal daily activities. In this review we discuss the main features and advantages of ambulatory assessment regarding clinical psychology and psychiatry: (a) the use of realtime assessment to circumvent biased recollection, (b) assessment in real life to enhance generalizability, (c) repeated assessment to investigate within person processes, (d) multimodal assessment, including psychological, physiological and behavioral data, (e) the opportunity to assess and investigate context-specific relationships, and (f) the possibility of giving feedback in real time. Using prototypic examples from the literature of clinical psychology and psychiatry, we demonstrate that ambulatory assessment can answer specific research questions better than laboratory or questionnaire studies.


2018 ◽  
Vol 210 ◽  
pp. 03008
Author(s):  
Aparajita Das ◽  
Manash Pratim Sarma ◽  
Kandarpa Kumar Sarma ◽  
Nikos Mastorakis

This paper describes the design of an operative prototype based on Internet of Things (IoT) concepts for real time monitoring of various environmental conditions using certain commonly available and low cost sensors. The various environmental conditions such as temperature, humidity, air pollution, sun light intensity and rain are continuously monitored, processed and controlled by an Arduino Uno microcontroller board with the help of several sensors. Captured data are broadcasted through internet with an ESP8266 Wi-Fi module. The projected system delivers sensors data to an API called ThingSpeak over an HTTP protocol and allows storing of data. The proposed system works well and it shows reliability. The prototype has been used to monitor and analyse real time data using graphical information of the environment.


The surveys regarding air pollution shows that there has been a hasty growth due to the emission of fuels and exhaust gases from factories. The Air Quality Index (AQI) has been launched to note the contemporary status of the air quality. The intent of AQI is to aid every individual know how the regional air quality will make an impact on them. The Environmental Protection Agency assess the AQI for five major air pollutants namely Nitrogen dioxide (NO2), ground-level ozone (O3), particle pollution (PM10, PM2.5), carbon monoxide (CO), and sulphur dioxide (SO2). The intent of the project is to congregate real-time Air Quality Index from distinct monitoring stations across India, analysing the data and reporting on it. Collect the real-time data using the API key provided by Open Government Data (OGD) platform India. This is done by making use of Microsoft Business Intelligence (MSBI) and Power BI Tools to transform, analyse and visualize the data. This project can be utilized to develop various programs like Ozone today in Europe and in mobile applications which acts as an alert system that can protect people from air pollution.


Author(s):  
M. Asif Naeem ◽  
Gillian Dobbie ◽  
Gerald Weber

In order to make timely and effective decisions, businesses need the latest information from big data warehouse repositories. To keep these repositories up to date, real-time data integration is required. An important phase in real-time data integration is data transformation where a stream of updates, which is huge in volume and infinite, is joined with large disk-based master data. Stream processing is an important concept in Big Data, since large volumes of data are often best processed immediately. A well-known algorithm called Mesh Join (MESHJOIN) was proposed to process stream data with disk-based master data, which uses limited memory. MESHJOIN is a candidate for a resource-aware system setup. The problem that the authors consider in this chapter is that MESHJOIN is not very selective. In particular, the performance of the algorithm is always inversely proportional to the size of the master data table. As a consequence, the resource consumption is in some scenarios suboptimal. They present an algorithm called Cache Join (CACHEJOIN), which performs asymptotically at least as well as MESHJOIN but performs better in realistic scenarios, particularly if parts of the master data are used with different frequencies. In order to quantify the performance differences, the authors compare both algorithms with a synthetic dataset of a known skewed distribution as well as TPC-H and real-life datasets.


Author(s):  
Hareetaa Mallani

Abstract: Air pollution is the biggest problem of every nation, whether it is developed or developing. Health problems have been growing at faster rate especially in urban areas of developing countries where industrialization and growing number of vehicles leads to release of lot of gaseous pollutants. Harmful effects of pollution include mild allergic reactions such as irritation of the throat, eyes and nose as well as some serious problems like bronchitis, heart diseases, pneumonia, lung and aggravated asthma. According to a survey, due to air pollution 50,000 to 100,000 premature deaths per year occur in the U.S. alone. LPG sensor is added in this system which is used mostly in houses. The system will show temperature and humidity. The system can be installed anywhere but mostly in industries and houses where gases are mostly to be found and gives an alert message when the system crosses threshold limit. The advantages of the detector, have a reliable stability, rapid response recovery and long-life features. It is affordable, userfriendly, low-cost and minimum-power requirement hardware which is appropriate for mobile measurement, as well as comprehensible data collection


Author(s):  
Abhijit S. Bodhe ◽  
Pravin Dhanrao ◽  
Abhimanyu Sangle ◽  
Jagdisha N.

Now a days wireless communication is become very vast, important and easy to access with multiple wireless sensor network in existence as it having very less cost associated and easily available via multiple mobile devices with sensors to create a hotspots, It creates a potential threat for community using wireless media for communicating some secure information like banking passwords, military information, biometric data etc. on unsecured network. This proposed paper will expose one of such potential threat Rouge Access Point (RAP) detection by making the use of soft computing prediction tool in our case fusion of neural network with fuzzy logic known as neuron-fuzzy method and design a fuzzy controller (FLC) to find such RAP & secure the existing wireless network where multiple sensors are actively working in real time to provide the real time data.


Author(s):  
Vanessa Kemajou ◽  
Robello Samuel

Abstract Drilling activities are risky and costly, especially when performed offshore. Careful monitoring and real time data analysis are required for safe and efficient operations with minimized down-time. Drilling operations, being fast-paced and not visible, often lead to transient and unforeseen issues. The synchronous assessment and prediction of drilling quality has historically been a challenge. It relies on a prompt collection, analysis and prediction of the multiple sensors data, as well as an immediate comparison to the original drilling plan. Another challenge is achieving real-time well engineering, and automatically and instantaneously providing valuable insights to the engineering and operations teams. A system was successfully developed to tackle these challenges. It is a cloud-based application, made with an event-driven streaming architecture to automatically retrieve real-time drilling data and compare it with planned data. The real-time data is automatically made available to determine the current well operation or rig state, and trigger the subsequent engineering analysis. Next, a forecast model is trained with the engineering calculation outputs and it returns predictions on these outputs while considering their inherent uncertainty. As a result, these predictions enable alerts to be sent when the system detects approaching anomalous conditions. The proposed system is a DecisionSpace® 365 cloud-native application on an open architecture. It is flexible, accessible from anywhere, can be automatically updated for continuous improvement, and can be deployed easily and quickly. It can also be extended to further applications.


2011 ◽  
Vol 13 (3) ◽  
pp. 307-323 ◽  
Author(s):  
Nemanja Branisavljević ◽  
Zoran Kapelan ◽  
Dušan Prodanović

The number of automated measuring and reporting systems used in water distribution and sewer systems is dramatically increasing and, as a consequence, so is the volume of data acquired. Since real-time data is likely to contain a certain amount of anomalous values and data acquisition equipment is not perfect, it is essential to equip the SCADA (Supervisory Control and Data Acquisition) system with automatic procedures that can detect the related problems and assist the user in monitoring and managing the incoming data. A number of different anomaly detection techniques and methods exist and can be used with varying success. To improve the performance, these methods must be fine tuned according to crucial aspects of the process monitored and the contexts in which the data are classified. The aim of this paper is to explore if the data context classification and pre-processing techniques can be used to improve the anomaly detection methods, especially in fully automated systems. The methodology developed is tested on sets of real-life data, using different standard and experimental anomaly detection procedures including statistical, model-based and data-mining approaches. The results obtained clearly demonstrate the effectiveness of the suggested anomaly detection methodology.


Sign in / Sign up

Export Citation Format

Share Document