scholarly journals Effect of Flexible Soil in Seismic Hazard Assessment for Structural Design in Kuala Lumpur

2019 ◽  
Vol 10 (1) ◽  
pp. 30-42
Author(s):  
Abu Bakar Nabilah ◽  
Chan Ghee Koh ◽  
Nor Azizi Safiee ◽  
Nik Norsyahariati Nik Daud

Kuala Lumpur, Malaysia, is considered to be safe against an earthquake threat. However, tremors felt by occupants due to long distance earthquakes from Sumatra has raised concern on building safety in this region. Consequently, Malaysia will adopt the Eurocode 8 for seismic design. The suitability of this code must be studied especially on the threat from far field earthquakes. Thus, site specific hazard assessment has been conducted on seven flexible soil sites in Kuala Lumpur, based on modified time history. The peak ground acceleration (PGA) falls in the category of very low seismicity, however, the amplifications are much higher than recommended by Eurocode 8. The period limits for maximum accelerations are also much higher compared to the value in the code, especially for flexible soils. Adoption of Eurocode 8 for seismic design in this region should be studied to include the effects of high period motions in flexible soils, especially on the amplification factors and its corner periods.

2001 ◽  
Vol 3 (1-2) ◽  
pp. 67-86 ◽  
Author(s):  
Didier LEYNAUD ◽  
Denis JONGMANS ◽  
Hervé TEERLYNCK ◽  
Thierry CAMELBEECK

The seismic hazard assessment has been conducted on the Belgian territory conforming to Eurocode 8, the European earthquake building code. The study was performed using the seismological database of the Royal Observatory of Belgium and the publications and open reports available for geological and geophysical data. The seismic hazard in Belgium was evaluated with a probabilistic analysis, using the public software SEISRISK III from the U.S. Geological Survey. The output consists of hazard maps showing the distribution of the horizontal peak ground acceleration for a return period of 475 years. Different maps are presented according to the choices that can be made on the attenuation laws and the definition of the seismic source zones. The computations have been made assuming that all Belgian territory is constituted by rock, as requested by Eurocode 8.


2012 ◽  
Vol 2012 ◽  
pp. 1-10 ◽  
Author(s):  
Zhenming Wang ◽  
David T. Butler ◽  
Edward W. Woolery ◽  
Lanmin Wang

A scenario seismic hazard analysis was performed for the city of Tianshui. The scenario hazard analysis utilized the best available geologic and seismological information as well as composite source model (i.e., ground motion simulation) to derive ground motion hazards in terms of acceleration time histories, peak values (e.g., peak ground acceleration and peak ground velocity), and response spectra. This study confirms that Tianshui is facing significant seismic hazard, and certain mitigation measures, such as better seismic design for buildings and other structures, should be developed and implemented. This study shows that PGA of 0.3 g (equivalent to Chinese intensity VIII) should be considered for seismic design of general building and PGA of 0.4 g (equivalent to Chinese intensity IX) for seismic design of critical facility in Tianshui.


1999 ◽  
Vol 42 (6) ◽  
Author(s):  
D. Giardini ◽  
G. Grünthal ◽  
K. M. Shedlock ◽  
P. Zhang

The Global Seismic Hazard Assessment Program (GSHAP), a demonstration project of the UN/International Decade of Natural Disaster Reduction, was conducted in the 1992-1998 period with the goal of improving global standards in seismic hazard assessment. The GSHAP Global Seismic Hazard Map has been compiled by joining the regional maps produced for different GSHAP regions and test areas; it depicts the global seismic hazard as Peak Ground Acceleration (PGA) with a 10% chance of exceedance in 50 years, corresponding to a return period of 475 years.


2020 ◽  
Vol 10 (11) ◽  
pp. 3942 ◽  
Author(s):  
Heungbae Gil ◽  
Kyoungbong Han ◽  
Junho Gong ◽  
Dooyong Cho

In areas of civil engineering, the resilient friction base isolator (R-FBI) system has been used due to its enhanced isolation performance under seismic excitations. However, because nonlinear behavior of the R-FBI should be reflected in seismic design, effective stiffness (Keff) of the R-FBI is uniformly applied at both peak ground acceleration (PGA) of 0.08 g and 0.154 g which use a multimodal response spectrum (RS) method analysis. For rational seismic design of bridges, it should be required to evaluate the dynamics of the R-FBI from in-field tests and to improve the seismic design procedure based on the performance level of the bridges. The objective of this study is to evaluate the dynamics of the R-FBI and to suggest the performance-based seismic design method for cable-supported bridges with the R-FBI. From the comparison between the experiments’ results and modal shape analyses, the modal shape analyses using primary (Ku) or infinite stiffness (fixed end) showed a great agreement with the experimental results compared to the application of Keff in the shape analysis. Additionally, the RS or nonlinear time history method analyses by the PGA levels should be applied by reflecting the dynamic characteristics of the R-FBI for the reasonable and efficient seismic design.


2010 ◽  
Vol 10 (1) ◽  
pp. 25-39 ◽  
Author(s):  
G-A. Tselentis ◽  
L. Danciu

Abstract. Seismic hazard assessment represents a basic tool for rational planning and designing in seismic prone areas. In the present study, a probabilistic seismic hazard assessment in terms of peak ground acceleration, peak ground velocity, Arias intensity and cumulative absolute velocity computed with a 0.05 g acceleration threshold, has been carried out for Greece. The output of the hazard computation produced probabilistic hazard maps for all the above parameters estimated for a fixed return period of 475 years. From these maps the estimated values are reported for 52 Greek municipalities. Additionally, we have obtained a set of probabilistic maps of engineering significance: a probabilistic macroseismic intensity map, depicting the Modified Mercalli Intensity scale obtained from the estimated peak ground velocity and a probabilistic seismic-landslide map based on a simplified conversion of the estimated Arias intensity and peak ground acceleration into Newmark's displacement.


2018 ◽  
Author(s):  
Daniel Weijie Loi ◽  
Mavinakere Eshwaraiah Raghunandan ◽  
Varghese Swamy

Abstract. Seismic hazard assessments – both deterministic and probabilistic, for Peninsular Malaysia have been carried out using peak ground acceleration (PGA) data recorded between 2004 and 2016 by the Malaysian Meteorological Department – using triaxial accelerometers placed at 19 seismic stations within the peninsula and monitored. Seismicity source modelling for the deterministic seismic hazard assessment (DSHA) used historical point sources whereas in the probabilistic (PSHA) approach, line and areal sources were used. The earthquake sources comprised the Sumatran Subduction Zone (SSZ), Sumatran Fault Zone (SFZ), and local intraplate (LI) faults. Gutenberg–Richter law b-value for the various zones identified within the SSZ ranged between 0.56 and 1.06 (mean = 0.83) and that for the zones within SFZ, between 0.53 and 1.13 (mean = 0.84). Suitable ground motion prediction equations (GMPEs) for Peninsular Malaysia along with other pertinent information were used for constructing a logic tree for PSHA of the region. The DSHA critical-worst scenario suggests PGAs of 0.07–0.80 ms−2, whilst the PSHA suggests mean PGAs of 0.06–0.42 ms−2 and 0.12–0.70 ms−2 at 10 % and 2 % probability of exceedance in 50 years, respectively. Both DSHA and PSHA, despite using different source models and methodologies, conclude that the central-western cities of Peninsular Malaysia located between 2° N and 4° N are most susceptible to high PGAs due to neighbouring active Sumatran sources SFZ and SSZ. Surprisingly, the relatively less active SFZ source with low magnitude seismicity appeared as the major contributor, due to its close proximity. Potential hazard due to SSZ mega-earthquakes should not be dismissed, however. Finally, DSHA performed using the limited intraplate seismic data from the Bukit Tinggi (LI) fault at a reasonable Mw 5.0 predicted a PGA of ~ 0.40 ms−2 at Kuala Lumpur.


2018 ◽  
Author(s):  
Lilis Fitri Handayani ◽  
Serly Marlina

Kabupaten Tambrauw adalah salah satu kabupaten di Provinsi Papua Barat, Indonesia. Pusat pemerintahan berada di Fef. Kabupaten Tambrauw mempunyai luas wilayah 11 529,19 Km², yang terdiri dari daratan dan lautan. Secara geografis Kabupaten Tambrauw pada sebelah Utara berbatasan dengan Samudera Pasifik, sebelah Selatan berbatasan dengan Kabupaten Sorong Selatan dan sebelah Timur berbatasan dengan Distrik Sidey dan Kabupaten Manokwari. Ada beberapa metode yang dapat digunakan dalam Seismic Hazard Assessment untuk membuat prediksi kejadian gempa di masa yang akan datang (gempa rencana). Pada analisa ini, Seismic Hazard Assessment menggunakan The Line Source Method untuk membuat Hazard curve yang dapat memperkirakan kejadian gempa di Kabupaten Tambrauw. Kurva hazard dibuat menggunakan fungsi atenuasi Esteva (1970), fungsi Atenuasi Hou & Hu (1991), fungsi Atenuasi Ambraseys (1995) dan fungsi Atenuasi Crouse-Mc Guirre (1996). Hasil analisa menunjukkan besarnya nilai percepatan tanah (ground acceleration) akan semakin mengecil pada jarak atau radius yang semakin jauh. Analisis kurva hazard pada daerah Kabupaten Tambrauw akibat pergeseran lempeng akan menunjukkan nilai terbesar pada saat menggunakan fungsi atenuasi Hou & Hu (1991) dan analisis kurva hazard pada daerah Kabupaten Tambrauw akibat pergeseran lempeng akan menunjukkan nilai terkecil pada saat menggunakan fungsi atenuasi Crouse-McGuirre (1996), F = 0.


2015 ◽  
Vol 58 (1) ◽  
Author(s):  
Shahid Ullah ◽  
Dino Bindi ◽  
Marco Pilz ◽  
Stefano Parolai

<p>It is well known that variability in the surface geology potentially leads to the modification of earthquake-induced ground motion over short distances. Although this effect is of major importance when seismic hazard is assessed at the urban level, it is very often not appropriately accounted for. In this paper, we present a first attempt at taking into account the influence of the shallow geological structure on the seismic hazard assessment for Bishkek, Kyrgyzstan, using a proxy (Vs30) that has been estimated from in situ seismic noise array analyses, and considering response spectral ratios calculated by analyzing a series of earthquake recordings of a temporary seismic network. To highlight the spatial variability of the observed ground motion, the obtained results are compared with those estimated assuming a homogeneous Vs30 value over the whole urban area. The seismic hazard is evaluated in terms of peak ground acceleration (PGA) and spectral acceleration (SA) at different periods (frequencies). The presented results consider the values obtained for a 10% probability of exceedance in 50 years. The largest SA estimated considering a rock site classification of the area (0.43 g) is observed for a period of 0.1 s (10 Hz), while the maximum PGA reaches 0.21 g. When site effects are included through the Vs30 proxy in the seismic hazard calculation, the largest SA, 0.67 g, is obtained for a period of 0.3 s (about 3.3 Hz). In terms of PGA, in this case the largest estimated value reaches 0.31 g in the northern part of the town. When the variability of ground motion is accounted for through response spectrum ratios, the largest SA reaches a value as high as 1.39 g at a period of 0.5 s. In general, considering site effects in the seismic hazard assessment of Bishkek leads to an increase of seismic hazard in the north of the city, which is thus identified as the most hazardous part within the study area and which is more far away from the faults.</p>


2019 ◽  
Vol 55 (1) ◽  
pp. 109 ◽  
Author(s):  
Nikolaos Vavlas ◽  
Anastasia Kiratzi ◽  
Basil Margaris ◽  
George Karakaisis

We carry out a probabilistic seismic hazard assessment (PSHA) for Lesvos Island, in the northeastern Aegean Sea. Being the most populated island in the northern Aegean Sea and hosting the capital of the prefecture, its seismic potential has significant social-economic meaning. For the seismic hazard estimation, the newest version of the R-CRISIS module, which has high efficiency and flexibility in model selection, is used. We incorporate into the calculations eight (8) ground motion prediction equations (GMPEs). The measures used are peak ground acceleration, (PGA), peak ground velocity, (PGV), and spectral acceleration, (SA), at T=0.2 sec representative of the building stock. We calculate hazard curves for selected sites on the island, sampling the southern and northern parts: Mytilene, the capital, the village of Vrisa, Mithymna and Sigri. Hazard maps are also presented in terms of all three intensity measures, for a mean return period of 475 years (or 10% probability of exceedance in 50 years), assuming a Poisson process. Our results are comparable to the predictions of on-going EU hazard models, but higher than the provisions of the Greek Seismic Code. Finally, we perform disaggregation of hazard to depict the relative contribution of different earthquake sources and magnitudes to the results.


2018 ◽  
Vol 18 (9) ◽  
pp. 2387-2408 ◽  
Author(s):  
Daniel Weijie Loi ◽  
Mavinakere Eshwaraiah Raghunandan ◽  
Varghese Swamy

Abstract. Seismic hazard assessments, both deterministic and probabilistic, for Peninsular Malaysia have been carried out using peak ground acceleration (PGA) data recorded between 2004 and 2016 by the Malaysian Meteorological Department using triaxial accelerometers placed at 19 seismic stations on the peninsula. Seismicity source modelling for the deterministic seismic hazard assessment (DSHA) used historical point sources whereas in the probabilistic (PSHA) approach, line and areal sources were used. The earthquake sources comprised the Sumatran subduction zone (SSZ), Sumatran fault zone (SFZ) and local intraplate (LI) faults. Gutenberg–Richter law b value for the various zones identified within the SSZ ranged between 0.56 and 1.06 (mean=0.82) and for the zones within the SFZ, between 0.57 and 1.03 (mean=0.89). Suitable ground motion prediction equations (GMPEs) for Peninsular Malaysia along with other pertinent information were used for constructing a logic tree for PSHA of the region. The DSHA “critical-worst” scenario suggests PGAs of 0.07–0.80 ms−2 (0.7–8.2 percent g), whilst the PSHA suggests mean PGAs of 0.11–0.55 ms−2 (0.5–5.4 percent g) and 0.20–1.02 ms−2 (1.9–10.1 percent g) at 10 % and 2 % probability of exceedance in 50 years, respectively. DSHA and PSHA, despite using different source models and methodologies, both conclude that the central-western cities of Peninsular Malaysia, located between 2 and 4∘ N, are most susceptible to high PGAs, due to neighbouring active Sumatran sources, SFZ and SSZ. Of the two Sumatran sources, surprisingly, the relatively less active SFZ source with low magnitude seismicity appeared as the major contributor due to its proximity. However, potential hazards due to SSZ mega-earthquakes should not be dismissed. Finally, DSHA performed using the limited LI seismic data from the Bukit Tinggi fault at a reasonable moment magnitude (Mw) value of 5.0 predicted a PGA of ∼0.40 ms−2 at Kuala Lumpur.


Sign in / Sign up

Export Citation Format

Share Document