Predicting Probability of Liquefaction Susceptibility based on a wide range of CPT data

In the present study, three efficient soft computing techniques i.e. GP, RVM, and MARS are utilized to predict the probabilistic liquefaction susceptibility of soils based on reliability analysis. For this, a sum of 253 Cone Penetration Test (CPT) data of nineteen major earthquakes occurred between 1964 and 2011 has been collected from the literature. Six liquefaction parameters such as corrected cone penetration resistance, total vertical stress, total effective stress, maximum horizontal acceleration, magnitude moment, and depth of penetration. To evaluate the overall performance of the proposed models, rank analysis has been carried out. Based on the values of performance indices, the GP model outperforms the other two models in terms of RMSE=0.15, R2 =0.77, and VAF=76.86 in the training stage while the same has been found 0.14, 0.81, and 80.46 in the testing phase. Also, the Rank Analysis confirms the superiority of the GP model in predicting the probability of liquefaction susceptibility of soils at all stages.

The general theory of axisymmetric hardness tests on nonlinear media is approached from the standpoint of similarity transformations. It is shown how an entire process of indentation can be made to depend on the solution of just one boundary-value problem in scaled variables and with a fixed geometry. Once this single auxiliary solution has been obtained, the values of all physical quantities in the original problem can be generated readily at any stage without further numerical error. Even by themselves the similarity relations provide valuable information about (for example) an invariant connection between the depth of penetration and the radius of contact, or about the variation of penetration with time in a creep test under dead load. Two kinds of material behaviour are considered: (a) nonlinear elastic (modelling strain-hardening plasticity) and (b) nonlinear viscous (modelling secondary creep). In either category the constitutive specification is sufficiently flexible to represent a wide range of actual responses in the context of hardness testing. The analysis for case (a) extends a theory of ball indentation by Hill et al . to a class of indenters with shapes varying from flat to conical. It also prepares the ground for case (6) which is more difficult and calls for a quite different auxiliary problem.


2019 ◽  
Vol 12 (1) ◽  
pp. 82
Author(s):  
Ahmad Khader Habboush

Application of mobile ad hoc networks (MANETs) has gained significant popularity among researchers in the field of data communication networks. However, a MANET operating in a wireless environment imposes a number of challenges for the implementers so far as routing of packets across it is concerned. There is a wide range of research contributions are available in the literature wherein authors propose various solutions to overcome the problems and bottleneck related to routing in MANET. Especially soft computing techniques and Ant Colony Optimization (ACO) in particular has been significantly popular among the researchers to resolve MANET routing issues. This technique plays a vital role in route discovery in particular. In this paper, we have conducted a comprehensive review of this technique applied to routing in MANET with respect to various criteria. Hopefully this paper serves to a perfect document for researchers in this field.


2016 ◽  
Vol 61 (1) ◽  
pp. 93-102 ◽  
Author(s):  
A. Lisiecki

The paper presents a detailed analysis of the influence of heat input during laser bead-on-plate welding of 5.0 mm thick plates of S700MC steel by modern Disk laser on the mechanism of steel penetration, shape and depth of penetration, and also on tendency to weld porosity formation. Based on the investigations performed in a wide range of laser welding parameters the relationship between laser power and welding speed, thus heat input, required for full penetration was determined. Additionally the relationship between the laser welding parameters and weld quality was determined.


2006 ◽  
Vol 10 (4) ◽  
pp. 535-552 ◽  
Author(s):  
A. K. Fleig ◽  
L. M. Tallaksen ◽  
H. Hisdal ◽  
S. Demuth

Abstract. How drought is characterised depends on the purpose and region of the study and the available data. In case of regional applications or global comparison a standardisation of the methodology to characterise drought is preferable. In this study the threshold level method in combination with three common pooling procedures is applied to daily streamflow series from a wide range of hydrological regimes. Drought deficit characteristics, such as drought duration and deficit volume, are derived, and the methods are evaluated for their applicability for regional studies. Three different pooling procedures are evaluated: the moving-average procedure (MA-procedure), the inter-event time method (IT-method), and the sequent peak algorithm (SPA). The MA-procedure proved to be a flexible approach for the different series, and its parameter, the averaging interval, can easily be optimised for each stream. However, it modifies the discharge series and might introduce dependency between drought events. For the IT-method it is more difficult to find an optimal value for its parameter, the length of the excess period, in particular for flashy streams. The SPA can only be recommended as pooling procedure for the selection of annual maximum series of deficit characteristics and for very low threshold levels to ensure that events occurring shortly after major events are recognized. Furthermore, a frequency analysis of deficit volume and duration is conducted based on partial duration series of drought events. According to extreme value theory, excesses over a certain limit are Generalized Pareto (GP) distributed. It was found that this model indeed performed better than or equally to other distribution models. In general, the GP-model could be used for streams of all regime types. However, for intermittent streams, zero-flow periods should be treated as censored data. For catchments with frost during the winter season, summer and winter droughts have to be analysed separately.


2001 ◽  
Vol 38 (3) ◽  
pp. 592-607 ◽  
Author(s):  
K M Lee

The reclamation for the new airport at Chek Lap Kok in Hong Kong included the placement of a substantial volume of sand fill by various hydraulic placement techniques, which resulted in a wide range of as-placed densities of the sand fill. This paper described the use of cone penetration tests (CPT) on the evaluation of the possible ranges of density achievable by various hydraulic placement methods adopted in the construction of the new airport. The results of the CPT indicated that the placement technique is one of the most important factors in controlling the as-placed density of hydraulically placed sand fill. There is a marked contrast in cone tip resistance (and the associated relative density) profiles for the sand fills formed by subaerial and subaqueous placement methods, in which the cone tip resistance of the sand fill formed by subaerial placement is substantially higher than that of the sand fill formed by subaequeous placement. The results confirm that dense sand fill cannot be formed by subaqueous placement methods. The weakest zone is generally located just beneath the water level where fill is placed by subaqueous discharge.Key words: sand, hydraulic fill, cone penetration test, calibration chamber test, in situ density.


Author(s):  
Stefano Melzi ◽  
Edoardo Sabbioni ◽  
Alessandro Concas ◽  
Marco Pesce

This work explores the possibility of using a non-structured algorithm as a sideslip angle valuer: on the basis of a preliminary numerical analysis, a neural network was designed and trained with experimental signals of lateral acceleration, vehicle speed, yaw rate and steer angle. The network was applied to experimental data in order to verify its capability of self-adaptation to changes in friction coefficient and to provide accurate estimations for manoeuvres sensibly different from the ones used during the training stage. The simple architecture joined with an appropriate training set conferred good self-adaptation properties to the neural network which was able to provide satisfying estimation of side slip angle for a wide range of manoeuvres and different friction conditions.


Author(s):  
Roisin Buckley ◽  
Stavroula Kontoe ◽  
Richard J. Jardine ◽  
Pedro Barbosa ◽  
Felix Schroeder

Pile driving in low to medium density chalk is subject to significant uncertainty. Predictions of Chalk Resistance to Driving (CRD) often vary considerably from field driving behaviour, with both pile refusals and free falls under zero load being reported. However, recent field studies have led to better understanding of the processes which control the wide range of behaviour seen in the field. This paper describes the primary outcomes of the analysis of dynamic tests at an onshore and an offshore site and uses the results to propose a new method to predict CRD. The method is based on phenomena identified experimentally: the relationship between cone penetration resistance and CRD, the attenuation of local stresses as driving advances and the operational effective stress interface shear failure characteristics. The proposed method is evaluated through back analyses of driving records from independent pile installation cases that were not included in developing the method, but involved known ground conditions, hammer characteristics and applied energies. The proposed method is shown to lead to more reliable predictions of CRD than the approaches currently applied by industry.


2012 ◽  
Vol 28 (4) ◽  
pp. 1331-1351 ◽  
Author(s):  
Adda Athanasopoulos-Zekkos ◽  
Mustafa Saadi

Guidelines for selecting ground motions for liquefaction evaluation analysis of earthen levees are proposed. These guidelines were developed based on results from dynamic analyses of characteristic earthen levee cross sections using a wide range of ground motions (~1,500). The effect of a number of ground motion parameters on the dynamic response of the levees in terms of liquefaction susceptibility was studied, and the parameters that correlated best to the response were identified. For the liquefaction triggering evaluation, the mean period of the ground motion ( Tm) is best correlated to the cyclic stress ratio (CSR). Regression relationships between CSR and Tm are proposed for a series of levee types and shaking intensities.


2013 ◽  
Vol 639-640 ◽  
pp. 118-129 ◽  
Author(s):  
Giuseppe Carlo Marano ◽  
Rita Greco ◽  
Giuseppe Quaranta ◽  
Alessandra Fiore ◽  
Jennifer Avakian ◽  
...  

Passive devices for vibration control are widely adopted in earthquake engineering for mitigation of seismic effects obtaining an efficient, robust and not expensive structural protection. They are largely used in the seismic protection of industrial machines, technical equipment, buildings, bridges and others more as reliable and affordable solutions. Moreover their performances are extremely sensitive to their dynamic mechanical behavior; a reliable identification of their mechanical behavior is therefore of key importance, despite the current lack of accurate and simple standard procedures to identify parameters and models for those devices. In this work, a new procedure for the dynamic identification of passive devices is described, through standard laboratory dynamic tests and the use of evolutionary algorithms. This procedure allows to find proper mechanical law and parameters to use for an accurate structural analysis and earthquake-resistant structure design. The procedure uses standard pre-qualification and quality-control tests, and consists in the minimization of the integral measure of the difference between mathematic and experimental applied force to the device under an imposed displacement time history. Due to the amount of corruption source of the experimental data and to the deep non linear nature of the problem, the use of evolutive algorithms is the main way to solve hard numerical task in an efficient way. The proposed procedure is applicable to a wide range of mathematical expressions because of its inherent stability and low computational cost, and allows comparing different mechanical laws by ranking their agreement with experimental data. Results are obtained for different experimentally tested devices, that are viscous dampers and seismic isolators, and are reported in order to demonstrate the efficiency of the proposed strategy.


Author(s):  
Khaled J. Hammad

Depth of penetration characteristics of a submerged viscoplastic non-Newtonian jet were studied by numerically solving the governing mass and momentum conservation equations along with the Bingham rheological model. Momentum and velocity based jet depths of penetration were introduced and used to analyze the obtained steady and laminar flow field information for a wide range of Reynolds and yield numbers. Depths of penetration were found to linearly increase with the Reynolds number and substantially decrease with the yield number. Penetration depths of yield stress fluids were shown to be more than an order of magnitude smaller than the ones corresponding to Newtonian fluids.


Sign in / Sign up

Export Citation Format

Share Document