A Novel PageRank Based Fault Handling Strategy for Workflow Scheduling in Cloud Data Centers

2021 ◽  
Vol 18 (4) ◽  
pp. 0-0

Unexpected faults result in unscheduled cloud outage, which negatively affects the completion of workflow tasks in the cloud. This paper presents a novel PageRank based fault handling strategy to rescue workflow tasks at the faulty data center. The proposed approach uses a holistic view and considers the task attributes, the timeline scenario, and the overall cloud performance. A priority assignment system is developed based on the modified PageRank algorithm to prioritise workflow tasks. A Min-Max normalization method is applied to select the target data center and match the timeline at this data center. Additionally, a dynamic PageRank-constrained task scheduling algorithm is proposed to generate the task scheduling solution. The simulation results show that the proposed approach can achieve better fault handling performance, measured by task resilience ratio, workflow resilience ratio and workflow continuity ratio, in both the traditional 3-replica and the image backup cloud environment.

2021 ◽  
Vol 17 (3) ◽  
pp. 155014772199721
Author(s):  
Mueen Uddin ◽  
Mohammed Hamdi ◽  
Abdullah Alghamdi ◽  
Mesfer Alrizq ◽  
Mohammad Sulleman Memon ◽  
...  

Cloud computing is a well-known technology that provides flexible, efficient, and cost-effective information technology solutions for multinationals to offer improved and enhanced quality of business services to end-users. The cloud computing paradigm is instigated from grid and parallel computing models as it uses virtualization, server consolidation, utility computing, and other computing technologies and models for providing better information technology solutions for large-scale computational data centers. The recent intensifying computational demands from multinationals enterprises have motivated the magnification for large complicated cloud data centers to handle business, monetary, Internet, and commercial applications of different enterprises. A cloud data center encompasses thousands of millions of physical server machines arranged in racks along with network, storage, and other equipment that entails an extensive amount of power to process different processes and amenities required by business firms to run their business applications. This data center infrastructure leads to different challenges like enormous power consumption, underutilization of installed equipment especially physical server machines, CO2 emission causing global warming, and so on. In this article, we highlight the data center issues in the context of Pakistan where the data center industry is facing huge power deficits and shortcomings to fulfill the power demands to provide data and operational services to business enterprises. The research investigates these challenges and provides solutions to reduce the number of installed physical server machines and their related device equipment. In this article, we proposed server consolidation technique to increase the utilization of already existing server machines and their workloads by migrating them to virtual server machines to implement green energy-efficient cloud data centers. To achieve this objective, we also introduced a novel Virtualized Task Scheduling Algorithm to manage and properly distribute the physical server machine workloads onto virtual server machines. The results are generated from a case study performed in Pakistan where the proposed server consolidation technique and virtualized task scheduling algorithm are applied on a tier-level data center. The results obtained from the case study demonstrate that there are annual power savings of 23,600 W and overall cost savings of US$78,362. The results also highlight that the utilization ratio of already existing physical server machines has increased to 30% compared to 10%, whereas the number of server machines has reduced to 50% contributing enormously toward huge power savings.


Processes ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 1514
Author(s):  
Aroosa Mubeen ◽  
Muhammad Ibrahim ◽  
Nargis Bibi ◽  
Mohammad Baz ◽  
Habib Hamam ◽  
...  

According to the research, many task scheduling approaches have been proposed like GA, ACO, etc., which have improved the performance of the cloud data centers concerning various scheduling parameters. The task scheduling problem is NP-hard, as the key reason is the number of solutions/combinations grows exponentially with the problem size, e.g., the number of tasks and the number of computing resources. Thus, it is always challenging to have complete optimal scheduling of the user tasks. In this research, we proposed an adaptive load-balanced task scheduling (ALTS) approach for cloud computing. The proposed task scheduling algorithm maps all incoming tasks to the available VMs in a load-balanced way to reduce the makespan, maximize resource utilization, and adaptively minimize the SLA violation. The performance of the proposed task scheduling algorithm is evaluated and compared with the state-of-the-art task scheduling ACO, GA, and GAACO approaches concerning average resource utilization (ARUR), Makespan, and SLA violation. The proposed approach has revealed significant improvements concerning the makespan, SLA violation, and resource utilization against the compared approaches.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Lavanya Dhanesh ◽  
Dr. P. Murugesan

The main objective of the research is to improve the performance of the CPU at software level by reducing the Interrupt Latency of the Real time systems. Interrupt Latency provides an important metric in increasing the performance of the Real Time Kernal. So far the research has been investigated with respect to real-time interrupt latency reduction using non-pre-emptive task scheduling algorithms. A general disadvantage of the non-preemptive discipline is that it introduces additional blocking time in higher priority tasks, so reducing schedulability. If the interrupt latency is increased, the task switching delay shall be increasing with respect to each task. Hence most of the research work has been focussed to reduce interrupt latency by using the Pre-emptive Task scheduling algorithm. Based on the literature survey, A Deadline Monotonic Priority Assignment technique is used to reduce the latency with respect to the deadline. Deferred pre-emption scheduling and Fixed pre-emptive scheduling algorithm are used to reduce the interrupt latencies based on the queue fixed to the priority of the tasks to be handled. Here we suggest a new algorithm named “Priority Preemptive task scheduling algorithm” which preempts and serve the task with highest priority and also concentrates on the low priority tasks during the buffering time of the higher priority tasks.


Author(s):  
Shailendra Raghuvanshi ◽  
Priyanka Dubey

Load balancing of non-preemptive independent tasks on virtual machines (VMs) is an important aspect of task scheduling in clouds. Whenever certain VMs are overloaded and remaining VMs are under loaded with tasks for processing, the load has to be balanced to achieve optimal machine utilization. In this paper, we propose an algorithm named honey bee behavior inspired load balancing, which aims to achieve well balanced load across virtual machines for maximizing the throughput. The proposed algorithm also balances the priorities of tasks on the machines in such a way that the amount of waiting time of the tasks in the queue is minimal. We have compared the proposed algorithm with existing load balancing and scheduling algorithms. The experimental results show that the algorithm is effective when compared with existing algorithms. Our approach illustrates that there is a significant improvement in average execution time and reduction in waiting time of tasks on queue using workflowsim simulator in JAVA.


Sign in / Sign up

Export Citation Format

Share Document