MagiThings

2013 ◽  
Vol 5 (3) ◽  
pp. 23-41 ◽  
Author(s):  
Hamed Ketabdar ◽  
Amin Haji-Abolhassani ◽  
Mehran Roshandel

The theory of around device interaction (ADI) has recently gained a lot of attention in the field of human computer interaction (HCI). As an alternative to the classic data entry methods, such as keypads and touch screens interaction, ADI proposes a touchless user interface that extends beyond the peripheral area of a device. In this paper, the authors propose a new approach for around mobile device interaction based on magnetic field. Our new approach, which we call it “MagiThings”, takes the advantage of digital compass (a magnetometer) embedded in new generation of mobile devices such as Apple’s iPhone 3GS/4G, and Google’s Nexus. The user movements of a properly shaped magnet around the device deform the original magnetic field. The magnet is taken or worn around the fingers. The changes made in the magnetic field pattern around the device constitute a new way of interacting with the device. Thus, the magnetic field encompassing the device plays the role of a communication channel and encodes the hand/finger movement patterns into temporal changes sensed by the compass sensor. The mobile device samples momentary status of the field. The field changes, caused by hand (finger) gesture, is used as a basis for sending interaction commands to the device. The pattern of change is matched against pre-recorded templates or trained models to recognize a gesture. The proposed methodology has been successfully tested for a variety of applications such as interaction with user interface of a mobile device, character (digit) entry, user authentication, gaming, and touchless mobile music synthesis. The experimental results show high accuracy in recognizing simple or complex gestures in a wide range of applications. The proposed method provides a practical and simple framework for touchless interaction with mobile devices relying only on an internally embedded sensor and a magnet.

Author(s):  
Mehran Roshandel ◽  
Amin Haji-Abolhassani ◽  
Hamed Ketabdar

This paper proposes a new approach for the “around-device interaction” based on magnetic field interaction. The new approach, called “MagiThings”, takes the advantage of digital compass embedded in the new generation of mobile devices. The user movements of a properly shaped magnet around the device deform the original magnetic field. The magnet is taken or worn around the fingers. The changes made in the magnetic field pattern around the device constitute a new way of interacting with the device. The mobile device samples momentary status of the field. The field changes, caused by hand gesture, are used as a basis for sending interaction commands to the device. The proposed methodology has been successfully tested for a variety of applications such as interaction with the user interface of a mobile device, character (digit) entry, user authentication, gaming and touch-less mobile music synthesis.


Author(s):  
Kamer Ali Yüksel

The theory of around device interaction (ADI) has recently gained a lot of attention in the field of human computer interaction (HCI). As an alternative to the classic data entry methods, such as keypads and touch screens, ADI founds a 3D user interface that extends to the peripheral area of a device. In this chapter, the authors introduce a revolutionary interaction framework that is based on the idea of ADI. The proposed method constitutes a touchless data entry system that is based on the interaction between the magnetic fields around a device and a properly shaped magnet. The magnetic field that surrounds the device is generated by a magnetic sensor (compass) that is embedded in the new generation of mobile phones such as Apple’s iPhone 3GS and 4G, and Google’s Nexus one. The user movements of the properly shaped magnet in front of the device, then, deforms the sensor’s original magnetic field pattern whereby we can constitute a new means of communication between the user and the device. Thus, the magnetic field encompassing the device plays the role of a communication channel and encodes the hand-movement patterns of the user into temporal changes of the sensor’s magnetic field. In the back-end of the communication, an engine samples the momentary status of the field during a trial and recognizes the user’s pattern by matching it against some pre-recorded templates. The proposed method has been tested in a variety of applications such as handwriting recognition, user authentication, gesture recognition, and some entertainment applications. The experimental results show that the proposed interface not only elevates the convenience of user-device interactions, but also shows very promising accuracies in a wide range of applications requiring user interactions.


2018 ◽  
Vol 1 (1) ◽  
pp. 30-34 ◽  
Author(s):  
Alexey Chernogor ◽  
Igor Blinkov ◽  
Alexey Volkhonskiy

The flow, energy distribution and concentrations profiles of Ti ions in cathodic arc are studied by test particle Monte Carlo simulations with considering the mass transfer through the macro-particles filters with inhomogeneous magnetic field. The loss of ions due to their deposition on filter walls was calculated as a function of electric current and number of turns in the coil. The magnetic field concentrator that arises in the bending region of the filters leads to increase the loss of the ions component of cathodic arc. The ions loss up to 80 % of their energy resulted by the paired elastic collisions which correspond to the experimental results. The ion fluxes arriving at the surface of the substrates during planetary rotating of them opposite the evaporators mounted to each other at an angle of 120° characterized by the wide range of mutual overlapping.


Data ◽  
2021 ◽  
Vol 6 (1) ◽  
pp. 4
Author(s):  
Evgeny Mikhailov ◽  
Daniela Boneva ◽  
Maria Pashentseva

A wide range of astrophysical objects, such as the Sun, galaxies, stars, planets, accretion discs etc., have large-scale magnetic fields. Their generation is often based on the dynamo mechanism, which is connected with joint action of the alpha-effect and differential rotation. They compete with the turbulent diffusion. If the dynamo is intensive enough, the magnetic field grows, else it decays. The magnetic field evolution is described by Steenbeck—Krause—Raedler equations, which are quite difficult to be solved. So, for different objects, specific two-dimensional models are used. As for thin discs (this shape corresponds to galaxies and accretion discs), usually, no-z approximation is used. Some of the partial derivatives are changed by the algebraic expressions, and the solenoidality condition is taken into account as well. The field generation is restricted by the equipartition value and saturates if the field becomes comparable with it. From the point of view of mathematical physics, they can be characterized as stable points of the equations. The field can come to these values monotonously or have oscillations. It depends on the type of the stability of these points, whether it is a node or focus. Here, we study the stability of such points and give examples for astrophysical applications.


2001 ◽  
Vol 674 ◽  
Author(s):  
Norio Ota ◽  
Hiroyuki Awano ◽  
Manabu Tani ◽  
Susumu Imai

ABSTRACTMagnetic Amplifying Magneto-Optical System (MAMMOS) shows human brain like memory behavior. Magnetic field and laser power have threshold to recover the stored memory like the human response of remembering. MAMMOS also has a feature to amplify very small recorded signals like our recovery of memory, e.g. fifty years ago episode.By adding the meaningful information on the magnetic field pattern, we can get some correlation between our memory and external stimulation. Such scheme is named as “the Active readout MAMMOS” which is analogues to the human process of remembering the memory.If the applied field pattern and timing phase just coincide with stored information, there occurs the coherent amplification of MAMMOS signal. We can utilize such phenomena as the trigger of “Memory Association”.


2000 ◽  
Vol 18 (10) ◽  
pp. 1257-1262 ◽  
Author(s):  
A. V. Pavlov ◽  
T. Abe ◽  
K.-I. Oyama

Abstract. We present a comparison of the electron density and temperature behaviour in the ionosphere and plasmasphere measured by the Millstone Hill incoherent-scatter radar and the instruments on board of the EXOS-D satellite with numerical model calculations from a time-dependent mathematical model of the Earth's ionosphere and plasmasphere during the geomagnetically quiet and storm period on 20–30 January, 1993. We have evaluated the value of the additional heating rate that should be added to the normal photoelectron heating in the electron energy equation in the daytime plasmasphere region above 5000 km along the magnetic field line to explain the high electron temperature measured by the instruments on board of the EXOS-D satellite within the Millstone Hill magnetic field flux tube in the Northern Hemisphere. The additional heating brings the measured and modelled electron temperatures into agreement in the plasmasphere and into very large disagreement in the ionosphere if the classical electron heat flux along magnetic field line is used in the model. A new approach, based on a new effective electron thermal conductivity coefficient along the magnetic field line, is presented to model the electron temperature in the ionosphere and plasmasphere. This new approach leads to a heat flux which is less than that given by the classical Spitzer-Harm theory. The evaluated additional heating of electrons in the plasmasphere and the decrease of the thermal conductivity in the topside ionosphere and the greater part of the plasmasphere found for the first time here allow the model to accurately reproduce the electron temperatures observed by the instruments on board the EXOS-D satellite in the plasmasphere and the Millstone Hill incoherent-scatter radar in the ionosphere. The effects of the daytime additional plasmaspheric heating of electrons on the electron temperature and density are small at the F-region altitudes if the modified electron heat flux is used. The deviations from the Boltzmann distribution for the first five vibrational levels of N2(v) and O2(v) were calculated. The present study suggests that these deviations are not significant at the first vibrational levels of N2 and O2 and the second level of O2, and the calculated distributions of N2(v) and O2(v) are highly non-Boltzmann at vibrational levels v > 2. The resulting effect of N2(v > 0) and O2(v > 0) on NmF2 is the decrease of the calculated daytime NmF2 up to a factor of 1.5. The modelled electron temperature is very sensitive to the electron density, and this decrease in electron density results in the increase of the calculated daytime electron temperature up to about 580 K at the F2 peak altitude giving closer agreement between the measured and modelled electron temperatures. Both the daytime and night-time densities are not reproduced by the model without N2(v > 0) and O2(v > 0), and inclusion of vibrationally excited N2 and O2 brings the model and data into better agreement.Key words: Ionosphere (ionospheric disturbances; ionosphere-magnetosphere interactions; plasma temperature and density)  


2021 ◽  
Author(s):  
Aditya Varma ◽  
Binod Sreenivasan

<p>It is known that the columnar structures in rapidly rotating convection are affected by the magnetic field in ways that enhance their helicity. This may explain the dominance of the axial dipole in rotating dynamos. Dynamo simulations starting from a small seed magnetic field have shown that the growth of the field is accompanied by the excitation of convection in the energy-containing length scales. Here, this process is studied by examining axial wave motions in the growth phase of the dynamo for a wide range of thermal forcing. In the early stages of evolution where the field is weak, fast inertial waves weakly modified by the magnetic field are abundantly present. As the field strength(measured by the ratio of the Alfven wave to the inertial wave frequency) exceeds a threshold value, slow magnetostrophic waves are spontaneously generated. The excitation of the slow waves coincides with the generation of helicity through columnar motion, and is followed by the formation of the axial dipole from a chaotic, multipolar state. In strongly driven convection, the slow wave frequency is attenuated, causing weakening of the axial dipole intensity. Kinematic dynamo simulations at the same parameters, where only fast inertial waves are present, fail to produce the axial dipole field. The dipole field in planetary dynamos may thus be supported by the helicity from slow magnetostrophic waves.</p>


2019 ◽  
Vol 488 (3) ◽  
pp. 3439-3445 ◽  
Author(s):  
Sharanya Sur

Abstract We explore the decay of turbulence and magnetic fields generated by fluctuation dynamo action in the context of galaxy clusters where such a decaying phase can occur in the aftermath of a major merger event. Using idealized numerical simulations that start from a kinetically dominated regime we focus on the decay of the steady state rms velocity and the magnetic field for a wide range of conditions that include varying the compressibility of the flow, the forcing wavenumber, and the magnetic Prandtl number. Irrespective of the compressibility of the flow, both the rms velocity and the rms magnetic field decay as a power law in time. In the subsonic case we find that the exponent of the power law is consistent with the −3/5 scaling reported in previous studies. However, in the transonic regime both the rms velocity and the magnetic field initially undergo rapid decay with an ≈t−1.1 scaling with time. This is followed by a phase of slow decay where the decay of the rms velocity exhibits an ≈−3/5 scaling in time, while the rms magnetic field scales as ≈−5/7. Furthermore, analysis of the Faraday rotation measure (RM) reveals that the Faraday RM also decays as a power law in time ≈t−5/7; steeper than the ∼t−2/5 scaling obtained in previous simulations of magnetic field decay in subsonic turbulence. Apart from galaxy clusters, our work can have potential implications in the study of magnetic fields in elliptical galaxies.


2020 ◽  
Vol 634 ◽  
pp. A96
Author(s):  
E. Vickers ◽  
I. Ballai ◽  
R. Erdélyi

Aims. We investigate the nature of the magnetic Rayleigh–Taylor instability at a density interface that is permeated by an oblique homogeneous magnetic field in an incompressible limit. Methods. Using the system of linearised ideal incompressible magnetohydrodynamics equations, we derive the dispersion relation for perturbations of the contact discontinuity by imposing the necessary continuity conditions at the interface. The imaginary part of the frequency describes the growth rate of waves due to instability. The growth rate of waves is studied by numerically solving the dispersion relation. Results. The critical wavenumber at which waves become unstable, which is present for a parallel magnetic field, disappears because the magnetic field is inclined. Instead, waves are shown to be unstable for all wavenumbers. Theoretical results are applied to diagnose the structure of the magnetic field in prominence threads. When we apply our theoretical results to observed waves in prominence plumes, we obtain a wide range of field inclination angles, from 0.5° up to 30°. These results highlight the diagnostic possibilities that our study offers.


Sign in / Sign up

Export Citation Format

Share Document