scholarly journals Fostering bacterial growth in BFT aquaculture tanks by early Nile tilapia stocking

2021 ◽  
Vol 43 ◽  
pp. e53009
Author(s):  
Francisco Roberto dos Santos Lima ◽  
Davi de Holanda Cavalcante ◽  
Marcelo Vinícius do Carmo e Sá

The current study aimed at fostering bacterial growth in BFT aquaculture tanks by early Nile tilapia stocking. Control tanks had no tilapia but received daily applications of dry molasses (NT+) or had tilapia but no C:N ratio adjustment (T-). Experimental tanks had tilapia and received daily application of molasses to adjust the C:N ratio of water to 15:1 (T+). The development of bioflocs in NT+ was insignificant as demonstrated by low levels of settleable solids (SS) and total suspended solids (TSS). Total ammonia nitrogen (TAN) was significantly higher in NT+ than in T+. In the C:N-ratio adjusted tanks, the presence of fish shortened the control of TAN in several days. As nitrite declined in T+, it increased in NT+. The final concentrations of TSS in T+, T- and NT+ were 236 ± 29 mg L-1, 100 ± 32 mg L-1, and 40 ± 22 mg L-1, respectively (p < 0.05). It can be concluded that stable nitrifying and heterotrophic bacterial communities could be attained in BFT aquaculture tanks, before the end of the 4th week of culture, if the bacterial growth is fostered by early Nile tilapia stocking.

2013 ◽  
Vol 35 (4) ◽  
Author(s):  
Francisco Jackes Rodrigues da Silva ◽  
Francisco Roberto dos Santos Lima ◽  
Diego Alves do Vale ◽  
Marcelo Vinícius do Carmo e Sá

2016 ◽  
Vol 74 (4) ◽  
pp. 935-942 ◽  
Author(s):  
Seyong Park ◽  
Fenghao Cui ◽  
Kyung Mo ◽  
Moonil Kim

In this study, we evaluated ammonia toxicity in mesophilic anaerobic digestion at various pH values and total ammonia nitrogen (TAN) concentrations. We performed anaerobic toxicity assays (ATAs) to evaluate the toxicity effects of TAN and pH on mesophilic anaerobic digestion. Modeling based on the results of the ATAs indicated that the specific methanogenic activity (SMA) decreased by 30% at a TAN concentration higher than 3.0 g/L compared to a TAN concentration of 0 g/L. In addition, the highest SMA for a given TAN level (0.5–10.0 g/L) was observed at a pH of around 7.6. The results of bacterial community analyses showed that the diversity and richness of microorganisms with increasing TAN concentration were decreased. Chloroflexi and Synergistetes were the dominant phyla at TAN concentrations less than 3.0 g/L, and Firmicutes was the dominant phylum at TAN concentrations higher than 3.0 g/L, implying that the ammonia toxicity concentration may influence the kind of dominant species. In conclusion, to start a stable mesophilic anaerobic digestion concerning ammonia toxicity, a TAN concentration less than 3.0 g/L is preferable.


2020 ◽  
Vol 8 (1) ◽  
pp. 84-101
Author(s):  
Sumoharjo Sumoharjo ◽  
Sulistyawati Sulistyawati

The purpose of this research were to measure the increasing of unionized ammonia during start-up period of biofloc system for growing Nile Tilapia and to figure out its effect on histopathological changes. There was only one treatment that designed with three replication, which was 40 liters of water that contained eight fishes of each weighed 22.. The biofloc system was treated with C/N ration 12:1. Total Ammonia Nitrogen, pH and temperature were measured daily as long as 14 days. the tissue of gill, liver and kidney were cut off at the end of the experiment for histopathological examination. The result of the experiment showed that the peak of unionized ammonia concentration achieved 0.34±0.05 mg/l at 10th day. Then, decreased rapidly to 0.003±0.0009 mg/l at 14th day. The gill, liver, and kidney had regressive changes as physiologic sub lethal response of unionized ammonia expose. Keywords : Biofloc, unionized ammonia, Nile Tilapia, histopatholocal


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Bharat Nandkumar Mulay ◽  
Konda Rajasekhar Reddy

Abstract This experimental investigation of a laboratory scale aquaponic system included testing of a biofilter with basil plant as the biofilter part on aquaculture water quality. Irridescent shark was selected as aquaculture species. The biofilter consist of natural biomaterials such as coconut husk, coco peat, and coarse aggregates. The experiment was carried out for three short water recirculation durations of 2, 3, and 4 h/day. The influent and effluent ammonia NH3, total ammonia nitrogen (TAN), nitrites NO2 and nitrates NO3 levels were measured and analysed. The results showed that the biofilter effectively removed NH3 (65 - 71 %), TAN (34 - 58 %), and NO2 (60 - 67 %) from the aquaculture water. The dissolved oxygen (DO) levels were maintained between 3 - 7.0 mg/l during all the recirculation durations. The significance of water recirculation period was assessed by calculating the differences between the means of water quality parameters with a statistical test named one-way analysis of variance (ANNOVA) with significant level P taken as 5 %, i.e., P ≤ 0.5. The effluent mean NH3 levels 0.030 mg/l, 0.033 mg/l, and 0.022 mg/l exhibited significant difference at 4 h/d periods while effluent TAN levels 0.81, 0.77, and 0.77 showed no difference with varying periods.


Aquaculture ◽  
2020 ◽  
Vol 520 ◽  
pp. 734963 ◽  
Author(s):  
Mamoru Oshiki ◽  
Takashi Aizuka ◽  
Hirotoshi Netsu ◽  
Satoshi Oomori ◽  
Akihiro Nagano ◽  
...  

2020 ◽  
Vol 412 (13) ◽  
pp. 3167-3176 ◽  
Author(s):  
Yanisa Thepchuay ◽  
Raquel B. R. Mesquita ◽  
Duangjai Nacapricha ◽  
António O. S. S. Rangel

2017 ◽  
Vol 39 (5) ◽  
pp. 601
Author(s):  
Davi De Holanda Cavalcante ◽  
Francisco Roberto Dos Santos Lima ◽  
Vanessa Tomaz Rebouças ◽  
Marcelo Vinícius do Carmo e Sá

The present study aimed to assess the possible beneficial effects of the integration between bioflocs and periphyton to the Nile tilapia’s water quality and growth performance. There were four treatments with five replicates each: (1) Control: green waters, (2) Periphyton: substrate-based system, (3) BFT: bioflocs technology for aquaculture, and (4) Biophyton: integration between bioflocs and periphyton. Fish (1.63 ± 0.07 g) were reared for 10 weeks in twenty 250 L outdoor tanks. Two polyethylene boards were vertically set out in the Periphyton and Biophyton tanks as underwater substrates. The C: N ratios of water in the BFT and Biophyton tanks were adjusted to 15:1 with dry molasses applications. The concentrations of total ammonia nitrogen were higher in the Control and Periphyton tanks than in the BFT and Biophyton ones. On the other hand, the concentrations of reactive phosphorus were higher in the BFT and Biophyton tanks than in the Control and Periphyton ones. The fish final body weight, specific growth rate and fish yield have not differed between the tanks. The integration between bioflocs and periphyton has not brought clear benefits to tilapia culture on water quality and growth performance.  


Sign in / Sign up

Export Citation Format

Share Document