Analysis of the Behavior of Solid-Liquid Systems Based on the Shape, Size Distribuition and Density of the Solid Particles

Author(s):  
F.O. Arouca ◽  
C.G. Azevedo ◽  
M.H.A. Oliveira ◽  
João Jorge Ribeiro Damasceno
2006 ◽  
Author(s):  
Bhagavatula Venkata Ramana Murthy

Fluidized beds are widely used in industries for mixing solid particles with liquids as the solid is vigorously agitated by the liquid passing through the bed and the mixing of the solid ensures that there are practically no temperature gradients in the bed even with exothermic or endothermic reactions (Mixing and the segregation in a liquid fluidized of particles with different sizes and densities", The Canadian Journal of Chemical Engineering, 1988). The violent motion of the solid particles also gives high heat transfer rates to the wall or to cooling tubes immersed in the bed. Because of the fluidity of the solid particles, it is easy to pass solid from one vessel to another. In the present experimental work, the relative density between solid and liquid phases on pressure drop under fluidized condition has been studied using the solid-liquid systems namely, glass beads-water, glass beads-kerosene, plastic beads-kerosene and diamond sugar-kerosene. Pressure drop - liquid velocity and void fraction - liquid velocity relationships have been found for all the mentioned solid-liquid systems under fluidized condition and results have been noted. The effect of the nature of the fluid on the minimum fluidization velocity and the pressure drop has been studied. In addition to the pressure drop studies, mass transfer studies have also been conducted with diamond sugar-water system with and without fluidization and results have been obtained. In addition to these, comparison of bed voidage, pressure drop and minimum fluidization velocity between denser and lighter liquids have been studied and the results have been obtained. Also, the value of rate of mass transfer with fluidization is compared that without fluidization for diamond sugar-water system and the results have been obtained.


2006 ◽  
Vol 530-531 ◽  
pp. 35-40 ◽  
Author(s):  
Fábio de Oliveira Arouca ◽  
C.G. Azevedo ◽  
M.H.A. Oliveira ◽  
João Jorge Ribeiro Damasceno

The dynamic analysis of behavior of solid particles in porous media such as settling processes are important for the dimensioning increasingly precise of pieces of equipment that promote the solid-liquid separation. Several factors can influence in dynamics of the fall of solid particles into a fluid medium; among them, the shape, distribution of sizes, and particle density. The main objective of this work is to analyze the behavior of solid-solid system based on the shape, size distribution and density of solid particles. The initial settling velocity in batch settling tests and the accommodation of particles in the sediment formed are evaluated for different materials. The gamma-ray attenuation technique was used in the experimental tests. Comparison of results obtained allowed evaluating in an exploratory research the significance of variables involved.


2019 ◽  
Vol 23 (1) ◽  
pp. 259-270 ◽  
Author(s):  
Reza Barmaki ◽  
Mir Biyouk Ehghaghi

Abstract In petroleum and mine industries, the centrifugal pumps were used for transferring solid particles with water. This method is preferable to other methods because of its user friendly and economic issues. In this article by selecting a proper pump and designing test circuit, we conducted hydraulic tests for water and water mixture with solid particles. For this purpose, an experimental set-up of centrifugal pump with only water and water with solid particles was developed. Then by analyzing the test results and efficiency equation, optimal coefficients of head loss is provided to improve the pump efficiency during hydraulic transmission of solids. The experimental results of power consumption, head, and pressure difference measurements in solid–liquid systems are presented. The experimental set-up results are compared with simulation and numerical one, which show a good agreement with them. It reveals that by adding the solid particles and increasing the fluid density up to 15%, the consumed power increases by about 20%, which result in dropping the efficiency of hydraulic system up to 6%. Finally, the optimal components for developed cycle presented for evaluation the various configuration and hydraulic analysis of pure flow and flow with solid particles in various applications to enhance the most achievable efficiency.


2005 ◽  
Vol 498-499 ◽  
pp. 49-54 ◽  
Author(s):  
Fábio de Oliveira Arouca ◽  
João Jorge Ribeiro Damasceno

The behavior of an isothermal and non-reaction solid-liquid system can be model using a mathematical model based on the Mixtures’ Theory of Continuum Mechanics. The knowledge of the constitutive equations of this phenomenon, as pressure on the solids and medium permeability, is very important in the design and performance evaluation of the continuous thickeners or filters. In this work the batch sedimentation phenomena of a kaolin aqueous suspensions was investigated. The technique consists on measuring of the gamma rays attenuation when they cross the physical media as a function of the local concentration at several vertical positions in a reservoir. Using the experimental data and local concentration as a function of the attenuation curve, it is possible to determine the constitutive equations. The results were satisfactory, allowing simulations of this phenomenon for steady and transient regimes in future papers.


2015 ◽  
Vol 754-755 ◽  
pp. 240-244
Author(s):  
M.N. Derman ◽  
Syaza Nabilla Mohd Suhaimi ◽  
Zuraidawani Che Daud

Microwave sintering is new sintering technology method to produce Al alloys. The advantages of this method because of very short sintering time and less production cost compare to conventional sintering. However, the main problems in microwave sintering are required to be controlled sintering time due to rapid sintering mechanism. Therefore the effect of microwave sintering time to PM Aluminium will be studied. The compacted and sintered aluminium powder is placed in a microwave oven at a different period of 5 minutes, 10 minutes, 15 minutes and 20 minutes. Compression of 150 MPa is applied on aluminium powder to form pellets. Palette is shaped to 1cm in diameter and weighs 1g. SiC is placed together with aluminium samples in the microwave for the purpose of absorbing electromagnetic energy and is converted to heat. Results of different period sintering of aluminium pallet production altered physical properties of each sample. For a rapid sintering time, aluminium pallet does not show any binding reaction between powder particles. Whereas, for long microwave sintering period, solid particles phase change into solid-liquid phase caused by the movement and the formation of bonds between particles. Hence, this will be affecting the mechanical properties of the sample material.


2003 ◽  
Vol 68 (1) ◽  
pp. 9-16 ◽  
Author(s):  
Nada Nikolic ◽  
Mihajlo Stankovic

Dried and milled haulm of potato (Solanum tuberosum L) was used as the solid phase. An ethanolic solution of hydrochloric acid mixed with chloroform in different volume ratios was the liquid phase. The aim of paper was to unite in a single step the processes of glycoalkaloids extraction from haulm, their hydrolysis to solanidine and the extraction of solanidine. This could make the procedure of obtaining solanidine faster and simpler. The best degree of solanidine hydrolytic extraction of 84.5% was achieved using 10% w/v hydrochloric acid in 96% vol. ethanol mixed with chloroform in a volume ratio of 2:3, after 120 min of hydrolytic extraction.


Author(s):  
Deyin Gu ◽  
Fenghui Zhao ◽  
Xingmin Wang ◽  
Zuohua Liu

Abstract The solid-liquid mixing characteristics in a stirred tank with pitched blade impellers, dislocated impellers, and dislocated guide impellers were investigated through using CFD simulation. The effects of impeller speed, impeller type, aperture ratio, aperture length, solid particle diameter and initial solid holdup on the homogeneity degree in the solid-liquid mixing process were investigated. As expected, the solid particle suspension quality was increased with an increase in impeller speed. The dislocated impeller could reduce the accumulation of solid particles and improve the cloud height compared with pitched blade impeller under the same power consumption. The dislocated guide impeller could enhance the solid particles suspension quality on the basis of dislocated impeller, and the optimum aperture ratio and aperture length of dislocated guide impeller were 12.25% and 7 mm, respectively, in the solid-liquid mixing process. Smaller solid particle diameter and lower initial solid holdup led to higher homogeneity degree of solid-liquid mixing system. The dislocated guide impeller could increase solid particle integrated velocity and enhance turbulent intensity of solid-liquid two-phase compared with pitched blade impeller and dislocated impeller under the same power consumption.


Sign in / Sign up

Export Citation Format

Share Document