Fatigue Damage Mechanism of Nanocrystals in ECAP-Processed Copper Investigated by EBSD and AFM Hybrid Methods

Author(s):  
Hidehiko Kimura ◽  
Yuka Kojima ◽  
Yoshiaki Akiniwa ◽  
Keisuke Tanaka ◽  
Takaaki Ishida
2007 ◽  
Vol 340-341 ◽  
pp. 943-948 ◽  
Author(s):  
Hidehiko Kimura ◽  
Yuka Kojima ◽  
Yoshiaki Akiniwa ◽  
Keisuke Tanaka ◽  
Takaaki Ishida

Electron backscattering diffraction, EBSD, technique as well as atomic force microscopy, AFM, was employed to investigate fatigue damage mechanism in ultrafine-grained copper processed by equal channel angular pressing, ECAP. The fatigue damage evolution under axial tension compression was investigated. The results show that linearly shaped fatigue damage was introduced in the scale of micrometers in spite of the average grain size of 300 nm. The linear damage was randomly oriented when the shear direction of the last ECAP-pressing in perpendicular to the loading axis. The orientation analysis by EBSD revealed that the linear damage is introduced in the area with the same crystallographic orientation in the direction of the maximum Schmid factor as in the slip deformation in coarse-grained materials. The comparison before and after fatigue tests shows the grain coarsening in the area where large linear fatigue damage was formed. It is considered that strain concentration at the edge of the slips introduced in a relatively coarse ultrafine grain causes the grain rotation and deformation in the adjacent nano-sized grains, resulting in the grain coarsening and subsequent propagation of the slips in the order of micrometers.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Fumio Inada ◽  
Michiya Sakai ◽  
Ryo Morita ◽  
Ichiro Tamura ◽  
Shin-ichi Matsuura ◽  
...  

Although acceleration and cumulative absolute velocity (CAV) are used as seismic indexes, their relationship with the damage mechanism is not yet understood. In this paper, a simplified evaluation method for seismic fatigue damage, which can be used as a seismic index for screening, is derived from the stress amplitude obtained from CAV for one cycle in accordance with the velocity criterion in ASME Operation and Maintenance of Nuclear Power Plants 2012, and the linear cumulative damage due to fatigue can be obtained from the linear cumulative damage rule. To verify the performance of the method, the vibration response of a cantilever pipe is calculated for four earthquake waves, and the cumulative fatigue damage is evaluated using the rain flow method. The result is in good agreement with the value obtained by the method based on the relative response. When the response spectrum obtained by the evaluation method is considered, the value obtained by the evaluation method has a peak at the peak frequency of the ground motion, and the value decreases with increasing natural frequency above the peak frequency. A higher peak frequency of the base leads to a higher value obtained by the evaluation method.


Author(s):  
Ramez Hajj ◽  
Kiran Mohanraj ◽  
Amit Bhasin ◽  
Adam Ramm ◽  
Michael Downer

2019 ◽  
Vol 157 ◽  
pp. 146-156 ◽  
Author(s):  
Tianliang Zhao ◽  
Zhiyong Liu ◽  
Xuexu Xu ◽  
Yong Li ◽  
Cuiwei Du ◽  
...  

1993 ◽  
Vol 03 (C7) ◽  
pp. C7-1651-C7-1656
Author(s):  
J. XIAO ◽  
C. BATHIAS

Author(s):  
Sung-Choong Woo ◽  
Nam Seo Goo

The aim of this study is to investigate fully reversed electric fatigue behavior of a piezoelectric composite actuator (PCA). For that purpose, fatigue tests with different loading conditions have been conducted and the performance degradation has been monitored. During a preset number of loading cycles, non-destructive acoustic emission (AE) tests were used for monitoring the damage evolution in real time. The displacement-cycle curves were obtained in fully reversed cyclic bending loading. The microstructures and fracture surfaces of PCA were examined to reveal their fatigue damage mechanism. The results indicated that the AE technique was applicable to fatigue damage assessment in the piezoelectric composite actuator. It was shown that the initial damage mechanism of PCAs under fully reversed electric cyclic loading originated from the transgranular fracture in the PZT ceramic layer; with increasing cycles, local intergranular cracking initiated and the either developed onto the surface of the PZT ceramic layer or propagated into the internal layer, which were some different depending on the drive frequencies and the lay-up sequence of the PCA.


2012 ◽  
Vol 41 ◽  
pp. 1559-1565 ◽  
Author(s):  
Z.N. Ismarrubie ◽  
H. Yussof ◽  
M. Sugano

Author(s):  
Cemal Basaran ◽  
Hong Tang ◽  
Shihua Nie

Fatigue damage is a progressive process of material degradation. The objective of this study is to experimentally qualify the damage mechanism in solder joints in electronic packaging under thermal fatigue loading. Another objective of this paper is to show that damage mechanism under thermal cycling and mechanical cycling is very different. Elastic modulus degradation under thermal cycling, which is considered as a physically detectable quantity of material degradation, was measured by Nano-indenter. It was compared with tendency of inelastic strain accumulation of solder joints in Ball Grid Array (BGA) package under thermal cycling, which was measured by Moire´ interferometry. Fatigue damage evolution in solder joints with traditional load-drop criterion was also investigated by shear-strain hysteresis loops from strain-controlled cyclic shear testing of thin layer solder joints. Load-drop behavior was compared with elastic modulus degradation of solder joints under thermal cycling. Following conventional Coffin-Manson approach, S-N curve was obtained from isothermal fatigue testing with load-drop criterion. Coffin-Manson curves obtained from strain controlled mechanical tests were used to predict fatigue life of solder joints. In this paper it is shown that this approach underestimates the fatigue life by an order of magnitude. Results obtained in this project indicate that thermal fatigue and isothermal mechanical fatigue are completely different damage mechanism for microstructurally evolving materials.


2019 ◽  
Vol 28 (9) ◽  
pp. 1344-1366 ◽  
Author(s):  
Fang-Dai Li ◽  
De-Guang Shang ◽  
Cheng-Cheng Zhang ◽  
Xiao-Dong Liu ◽  
Dao-Hang Li ◽  
...  

The multiaxial thermomechanical fatigue properties for nickel-based superalloy GH4169 in aeroengine turbine discs are investigated in this paper. Four types of axial–torsional thermomechanical fatigue experiments were performed to identify the cyclic deformation behavior and the damage mechanism. The experimental results showed that the creep damage can be generated under thermally in-phase loading while it can be ignored under thermally out-of-phase loading, and the responded stress increasing phenomenon, that is, non-proportional hardening, can be shown under the mechanically out-of-phase strain loading. Based on the analysis of cyclic deformation behavior and damage mechanism, a life prediction method was proposed for multiaxial thermomechanical fatigue, in which the pure fatigue damage, the creep damage, and the interaction between them were simultaneously considered. The pure fatigue damage can be calculated by the isothermal fatigue parameters corresponding to the temperature without creep; the creep damage can be calculated by the principle of subdivision, and the creep–fatigue interaction can be determined by creep damage, fatigue damage, and an interaction coefficient which is used to reflect the creep–fatigue interaction strength. The predicted results showed that the proposed method is reasonable.


Sign in / Sign up

Export Citation Format

Share Document