Characterization of the Calcium Phosphate Porous Ceramic Obtained by Foam Consolidation Using Albumin

Author(s):  
Christiane Ribeiro ◽  
José Carlos Bressiani ◽  
A.H.A. Bressiani
2007 ◽  
Vol 361-363 ◽  
pp. 971-974 ◽  
Author(s):  
Christiane Ribeiro ◽  
José Carlos Bressiani ◽  
Ana Helena A. Bressiani

In many in-vivo and in vitro studies, the behavior of calcium phosphate ceramics like β - tricalcium phosphate in biological environments has been reported to be predictive and positive. In terms of bone tissue growth, this ceramic can be more attractive presenting a porous microstructure. To obtain biomaterial quality ceramics, in this investigation β- TCP porous ceramics were prepared by a special consolidation method with albumin as a foam generating agent. This technique enables preparation a variety of formats with complex geometries. To obtain porous samples using albumin, heat had to be introduced into the system during the consolidation stage. After consolidation, the samples were sintered at 1250oC for 30 minutes and characterized using X-ray diffractometry, scanning electron microscopy and mercury porosimetry. The foams that were obtained by this method exhibited spherical and interconnected pores, characteristics desirable in biomedical implants.


2021 ◽  
pp. 1-8
Author(s):  
Kehan Deng ◽  
Haiwen Chen ◽  
Wenxue Dou ◽  
Qi Cai ◽  
Xingang Wang ◽  
...  

2013 ◽  
Vol 845 ◽  
pp. 256-260 ◽  
Author(s):  
M. Abubakar ◽  
A.B. Aliyu ◽  
Norhayati Ahmad

Porous ceramics were produced by compaction method of Nigerian clay and cassava starch. The samples were prepared by adding an amount from 5 to 30%wt of cassava starch into the clay and sintered at temperature of 900-1300°C. The influence of cassava starch content on the bulk density and apparent porosity was studied. The result of XRD and DTA/TGA shows that the optimum sintering temperature was found to be 1300°C. The percentage porosity increased from 12.87 to 43.95% while bulk density decreased from 2.16 to 1.46g/cm3 with the increase of cassava starch from 5 to 30%wt. The effect of sintering temperature and cassava starch content improved the microstructure in terms of porosity and the thermal properties of porous clay for various applications which requires a specific porosity.


2011 ◽  
Vol 31 (5) ◽  
pp. 906-914 ◽  
Author(s):  
A. Roguska ◽  
M. Pisarek ◽  
M. Andrzejczuk ◽  
M. Dolata ◽  
M. Lewandowska ◽  
...  

2009 ◽  
Vol 610-613 ◽  
pp. 1391-1394
Author(s):  
Hua De Zheng ◽  
Ying Jun Wang ◽  
Qiang Ma ◽  
Cheng Yun Ning ◽  
Xiao Feng Chen

In the present study, an Intelligent Multi-parameter Simulated Evaluation in vitro (IMSE system) was used to study the deposition properties of apatite formation on the surface of biphasic calcium phosphate porous ceramic (BCP) from static and dynamic r-SBF. Results showed that apatite formed on the surface of BCP from static and dynamic r-SBF differed between each other. In static r-SBF, ions were transferred by diffusion, which could not compensate the consuming of calcium ions, and mist apatite layer was formed on the surface of samples. But in the dynamic r-SBF, simulated fluid was adjusted precisely and flowed forcedly, the concentrations of ions were homogeneous; with the compensation of ions, calcium and phosphate were supersaturated, and the free energy of apatite formation was negative, bone-like apatite sheets were formed on the surface of samples.


2007 ◽  
Vol 12 (4) ◽  
pp. 574-582 ◽  
Author(s):  
Nelson Heriberto de Almeida Camargo ◽  
O. J. Bellini ◽  
Enori Gemelli ◽  
M. Tomiyama

Nanostructured materials have been largely studied in the last few years because they have a great potential to applications in different fields like physics, chemistry, biology, mechanic and medicine. Synthesis and characterization of nanostructured materials is a subject of great interest involving science, market, politicians, government and society. The nanostructured materials are in demand in biomedical area, mainly the bioceramics composed of calcium phosphates (Ca/P), which have an excellent biocompatibility and mineralogical characteristics similar to those of bones. The aim of this work was to optimize the method of powder synthesis of nanostructured calcium phosphate and of nanocomposites composed of calcium phosphate//SiO2n, containing 5, 10 and 15% (in volume) of nanometric silica (SiO2n). The results are expressed according to the method of synthesis, mineralogical and morphological characterization, and thermal behavior for the different compositions of the nanostructured powder synthesized.


Sign in / Sign up

Export Citation Format

Share Document