Mechanical and Fracture Behaviour of a SiC-Particle-Reinforced Aluminum Alloy at High Temperature

Author(s):  
D. Božić ◽  
M. Vilotijević ◽  
V. Rajković ◽  
Ž. Gnjidić
Alloy Digest ◽  
1995 ◽  
Vol 44 (7) ◽  

Abstract ALUMINUM ALLOY 201.0 is a structural casting alloy available as sand, permanent mold and investment castings. It is used in structural casting members, applications requiring high tensile and yield strengths with moderate elongation, and where high strength and energy-absorption capacity are needed. This datasheet provides information on composition, physical properties, and elasticity as well as creep and fatigue. It also includes information on high temperature performance as well as casting, heat treating, machining, joining, and surface treatment. Filing Code: AL-336. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1994 ◽  
Vol 43 (10) ◽  

Abstract Duralcan F3S.xxS is a heat treatable aluminum alloy-matrix gravity composite. The base alloy is similar to Aluminum 359 (Alloy Digest Al-188, July 1969); the discontinuously reinforced composite is silicon carbide. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness and fatigue. It also includes information on high temperature performance. Filing Code: AL-329. Producer or source: Alcan Aluminum Corporation.


Alloy Digest ◽  
1990 ◽  
Vol 39 (1) ◽  

Abstract ALCOA ALUMINUM ALLOY 7050 is an aluminum-zinc-copper-magnesium alloy with a superior combination of strength, stress-corrosion cracking resistance and toughness, particularly in thick sections. In thin sections it also possesses an excellent combination of properties that are important for aerospace applications. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Al-233. Producer or source: Aluminum Company of America. Originally published as Aluminum 7050, January 1979, revised January 1990.


Alloy Digest ◽  
1959 ◽  
Vol 8 (11) ◽  

Abstract BIRMABRIGHT B.B.5 is a corrosion resistant, medium-strength magnesium-aluminum alloy in both the cast and wrought conditions. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fatigue. It also includes information on high temperature performance and corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Al-85. Producer or source: Birmabright Ltd.


Alloy Digest ◽  
1988 ◽  
Vol 37 (11) ◽  

Abstract UNS A96061 is a wrought precipitation-hardenable aluminum alloy having excellent resistance to corrosion and good mechanical properties. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-292. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1975 ◽  
Vol 24 (11) ◽  

Abstract FEDERATED F150.5 is a heat-treatable aluminum alloy containing silicon and copper as the major alloying elements. It is recommended for high-strength, light-weight, pressure-tight castings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance as well as casting, heat treating, machining, and joining. Filing Code: Al-219. Producer or source: Federated Metals Corporation, ASARCO Inc..


2021 ◽  
pp. 116973
Author(s):  
Glenn H. Balbus ◽  
Johann Kappacher ◽  
David J. Sprouster ◽  
Fulin Wang ◽  
Jungho Shin ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 581
Author(s):  
Abdulhakim A. Almajid

This study is focused on the deformation mechanism and behavior of naturally aged 7010 aluminum alloy at elevated temperatures. The specimens were naturally aged for 60 days to reach a saturated hardness state. High-temperature tensile tests for the naturally aged sample were conducted at different temperatures of 573, 623, 673, and 723 K at various strain rates ranging from 5 × 10−5 to 10−2 s−1. The dependency of stress on the strain rate showed a stress exponent, n, of ~6.5 for the low two temperatures and ~4.5 for the high two temperatures. The apparent activation energies of 290 and 165 kJ/mol are observed at the low, and high-temperature range, respectively. These values of activation energies are greater than those of solute/solvent self-diffusion. The stress exponents, n, and activation energy observed are rather high and this indicates the presence of threshold stress. This behavior occurred as a result of the dislocation interaction with the second phase particles that are existed in the alloy at the testing temperatures. The threshold stress decreases in an exponential manner as temperature increases. The true activation energy was computed by incorporating the threshold stress in the power-law relation between the stress and the strain. The magnitude of the true activation energy, Qt dropped to 234 and 102 kJ/mol at the low and high-temperature range, respectively. These values are close to that of diffusion of Zinc in Aluminum and diffusion of Magnesium in Aluminum, respectively. The Zener–Hollomon parameter for the alloy was developed as a function of effective stress. The data in each region (low and high-temperature region) coalescence in a segment line in each region.


Sign in / Sign up

Export Citation Format

Share Document