Influence of Surface Properties on Microscratch Durability of Aluminum Nitride Semiconductor Processing Component

Author(s):  
L. Chouanine ◽  
M. Takano ◽  
F. Ashihara ◽  
Osamu Kamiya ◽  
M. Nishida
2005 ◽  
Vol 9 ◽  
pp. 59-68
Author(s):  
L. Chouanine ◽  
M. Takano ◽  
F. Ashihara ◽  
Osamu Kamiya ◽  
M. Nishida

The effect of the surface properties on the microtribological characteristics of AlN-based electrostatic chuck (EC) for silicon plasma etching was investigated using automatic microscratch testing technique in combination with SEM examination of the scratch track. The scratch testing was performed by applying a progressive indenter load. The scratch failure model varied systematically with the surface properties of AlN. The data of the onset of brittle fracture were used as characteristic features of the AlN failure. It was found that the critical load, Lc, the smallest applied normal load leading to unacceptable damage such as chipping and cracking, increases with decreasing the average grain size, density and fracture toughness of AlN and decreases with increasing the surface roughness and area density of pre-existing polishing damages. The resistance to cohesion and adhesion failure of AlN with 0.1 µm Al2O3 oxide layer on top was stronger than that of the AlN bulk material. The fracture initiation and ductile to brittle transition in AlNAl2O3( 0.1µm) was in form of discontinuous chipping. The results infer the potential of the combination of the scratch data with the material properties for the understanding of the effect of the surface topography on the mechanical properties and chucking performance of AlN-based EC.


2002 ◽  
Author(s):  
Petr G. Eliseev ◽  
Andrei A. Ionin ◽  
Yurii M. Klimachev ◽  
Dmitrii V. Sinitsyn ◽  
Jinhyun Lee ◽  
...  

Author(s):  
D.C. Hixson ◽  
J.C. Chan ◽  
J.M. Bowen ◽  
E.F. Walborg

Several years ago Karasaki (1) reported the production of type C virus particles by Novikoff ascites hepatocarcinoma cells. More recently, Weinstein (2) has reported the presence of type C virus particles in cell cultures derived from transplantable and primary hepatocellular carcinomas. To date, the biological function of these virus and their significance in chemically induced hepatocarcinogenesis are unknown. The present studies were initiated to determine a possible role for type C virus particles in chemically induced hepatocarcinogenesis. This communication describes results of studies on the biological and surface properties of type C virus associated with Novikoff hepatocarcinoma cells.Ecotropic and xenotropic murine leukemia virus (MuLV) activity in ascitic fluid of Novikoff tumor-bearing rats was assayed in murine sarcoma virus transformed S+L- mouse cells and S+L- mink cells, respectively. The presence of sarcoma virus activity was assayed in non-virus-producing normal rat kidney (NRK) cells. Ferritin conjugates of concanavalin A (Fer-Con wheat germ agglutinin (Fer-WGA), and Ricinus communis agglutinins I and II (Fer-RCAI and Fer-RCAII) were used to probe the structure and topography of saccharide determinants present on the viral envelope.


Author(s):  
R. H. Ritchie ◽  
A. Howie

An important part of condensed matter physics in recent years has involved detailed study of inelastic interactions between swift electrons and condensed matter surfaces. Here we will review some aspects of such interactions.Surface excitations have long been recognized as dominant in determining the exchange-correlation energy of charged particles outside the surface. Properties of surface and bulk polaritons, plasmons and optical phonons in plane-bounded and spherical systems will be discussed from the viewpoint of semiclassical and quantal dielectric theory. Plasmons at interfaces between dissimilar dielectrics and in superlattice configurations will also be considered.


Author(s):  
D. L. Callahan

Modern polishing, precision machining and microindentation techniques allow the processing and mechanical characterization of ceramics at nanometric scales and within entirely plastic deformation regimes. The mechanical response of most ceramics to such highly constrained contact is not predictable from macroscopic properties and the microstructural deformation patterns have proven difficult to characterize by the application of any individual technique. In this study, TEM techniques of contrast analysis and CBED are combined with stereographic analysis to construct a three-dimensional microstructure deformation map of the surface of a perfectly plastic microindentation on macroscopically brittle aluminum nitride.The bright field image in Figure 1 shows a lg Vickers microindentation contained within a single AlN grain far from any boundaries. High densities of dislocations are evident, particularly near facet edges but are not individually resolvable. The prominent bend contours also indicate the severity of plastic deformation. Figure 2 is a selected area diffraction pattern covering the entire indentation area.


Author(s):  
Daniel Callahan ◽  
G. Thomas

Oxygen impurities may significantly influence the properties of nitride ceramics with a strong dependence on the microstructural distribution of the impurity. For example, amorphous oxygen-rich grain boundary phases are well-known to cause high-temperature mechanical strength degradation in silicon nitride whereas solutionized oxygen is known to decrease the thermal conductivity of aluminum nitride. Microanalytical characterization of these impurities by spectral methods in the AEM is complicated by reactions which form oxygen-rich surface phases not representative of the bulk material. Furthermore, the impurity concentrations found in higher quality ceramics may be too low to measure by EDS or PEELS. Consequently an alternate method for the characterization of impurities in these ceramics has been investigated.Convergent beam electron diffraction (CBED) is a promising technique for the study of impurity distributions in aluminum nitride ceramics. Oxygen is known to enter into stoichiometric solutions with AIN with a consequent decrease in lattice parameter.


Author(s):  
S. Cao ◽  
A. J. Pedraza ◽  
L. F. Allard

Excimer-laser irradiation strongly modifies the near-surface region of aluminum nitride (AIN) substrates. The surface acquires a distinctive metallic appearance and the electrical resistivity of the near-surface region drastically decreases after laser irradiation. These results indicate that Al forms at the surface as a result of the decomposition of the Al (which has been confirmed by XPS). A computer model that incorporates two opposing phenomena, decomposition of the AIN that leaves a metallic Al film on the surface, and thermal evaporation of the Al, demonstrated that saturation of film thickness and, hence, of electrical resistance is reached when the rate of Al evaporation equals the rate of AIN decomposition. In an electroless copper bath, Cu is only deposited in laser-irradiated areas. This laser effect has been designated laser activation for electroless deposition. Laser activation eliminates the need of seeding for nucleating the initial layer of electroless Cu. Thus, AIN metallization can be achieved by laser patterning followed by electroless deposition.


2020 ◽  
Author(s):  
Rohlf CM ◽  
Garcia TC ◽  
Marsh LJ ◽  
Fyhrie DP ◽  
le Jeune SS ◽  
...  
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document